Реферат: «Уравнения с двумя неизвестными в целых числах. Решение уравнений с двумя переменными Методы решения линейных уравнений в целых числах

Введение

Существует множество математических задач, ответами к которым служат одно или несколько целых чисел. В качестве примера можно привести четыре классические задачи, решаемые в целых числах – задача о взвешивании, задача о разбиении числа, задача о размене и задача о четырёх квадратах. Стоит отметить, что, несмотря на достаточно простую формулировку этих задач, решаются они весьма сложно, с применением аппарата математического анализа и комбинаторики. Идеи решения первых двух задач принадлежат швейцарскому математику Леонарду Эйлеру (1707–1783). Однако наиболее часто можно встретить задачи, в которых предлагается решить уравнение в целых (или в натуральных) числах. Некоторые из таких уравнений довольно легко решаются методом подбора, но при этом возникает серьёзная проблема – необходимо доказать, что все решения данного уравнения исчерпываются подобранными (то есть решений, отличных от подобранных, не существует). Для этого могут потребоваться самые разнообразные приёмы, как стандартные, так и искусственные. Анализ дополнительной математической литературы показывает, что подобные задания достаточно часто встречаются в олимпиадах по математике разных лет и различных уровней, а также в задании 19 ЕГЭ по математике (профильный уровень). В то же время в школьном курсе математики данная тема практически не рассматривается, поэтому школьники, участвуя в математических олимпиадах или сдавая профильный ЕГЭ по математике, обычно сталкиваются со значительными трудностями при выполнении подобного рода заданий. В связи с этим целесообразно выделить систему основных методов решения уравнений в целых числах, тем более что в изученной математической литературе этот вопрос явно не оговаривается. Описанная проблема определила цель данной работы: выделить основные методы решения уравнений в целых числах. Для достижения поставленной цели необходимо было решить следующие задачи:

1) Проанализировать олимпиадные материалы, а также материалы профильного ЕГЭ по математике;

2) Обозначить методы решения уравнений в целых числах и выделить преобладающие;

3) Полученные результаты проиллюстрировать примерами;

4) Составить несколько тренировочных заданий по данной теме;

5) Применяя разработанные задания, определить степень готовности учащихся девятых классов МБОУ СОШ №59 к решению подобного рода задач и сделать практические выводы.

Основная часть

Анализ разнообразной математической литературы показывает, что среди методов решения уравнений в целых числах в качестве основных можно выделить следующие:

  1. Представление уравнения в виде произведения нескольких множителей, равного некоторому целому числу;
  2. Представление уравнения в виде суммы квадратов нескольких слагаемых, равной некоторому целому числу;
  3. Использование свойств делимости, факториалов и точных квадратов;
  4. Использование Малой и Великой теорем Ферма;
  5. Метод бесконечного спуска;
  6. Выражение одной неизвестной через другую;
  7. Решение уравнения как квадратного относительно одной из неизвестных;
  8. Рассмотрение остатков от деления обеих частей уравнения на некоторое число.

Сразу же нужно оговорить, что мы понимаем под основными методами решения уравнений. Основными будем называть наиболее часто применяющиеся методы, что, конечно, не исключает возможности периодического применения новых «неожиданных» приёмов. Кроме того, причём в подавляющем большинстве случаев, применяют их различные сочетания, то есть проводят комбинирование нескольких методов.
В качестве примера сочетания методов рассмотрим уравнение, предлагавшееся на ЕГЭ по математике в 2013 году (задание С6).

Задача. Решить в натуральных числах уравнение n ! + 5n + 13 = k 2 .

Решение. Заметим, что оканчивается нулём при n > 4. Далее, при любых n ∈ N оканчивается либо цифрой 0, либо цифрой 5. Следовательно, при n > 4 левая часть уравнения оканчивается либо цифрой 3, либо цифрой 8. Но она же равна точному квадрату, который не может оканчиваться этими цифрами. Поэтому нужно перебрать только четыре варианта: n = 1, n = 2, n = 3, n = 4.

Значит, уравнение имеет единственное натуральное решение n = 2, k = 5.

В этой задаче использовались свойства точных квадратов, свойства факториалов, и остатки от деления обеих частей уравнения на 10.

Задача 1. n 2 - 4y ! = 3.

Решение. Сначала перепишем исходное уравнение в виде n 2 = 4y ! + 3. Если посмотреть на это соотношение с точки зрения теоремы о делении с остатком, то можно заметить, что точный квадрат, стоящий в левой части уравнения, даёт при делении на 4 остаток 3, что невозможно. Действительно, любое целое число представимо в одном из следующих четырёх видов:

Таким образом, точный квадрат при делении на 4 даёт в остатке либо 0, либо 1. Следовательно, исходное уравнение не имеет решений.

Ключевая идея – применение свойств точных квадратов.

Задача 2. 8z 2 = (t !) 2 + 2.

Решение. Непосредственная проверка показывает, что t = 0 и t = 1 не являются решениями уравнения. Если t > 1, то t ! является чётным числом, то есть, оно представимо в виде t ! = 2s . В таком случае уравнение можно преобразовать к виду 4z 2 = 2s 2 + 1. Однако, полученное уравнение заведомо не имеет решений, ибо в левой части стоит чётное число, а в правой – нечётное.

Ключевая идея – применение свойств факториалов.

Задача 3. Решить в целых числах уравнение x 2 + y 2 – 2x + 6y + 5 = 0.

Решение. Исходное уравнение можно переписать следующим образом: (x – 1) 2 + (y + 3) 2 = 5.

Из условия следует, что (x – 1), (y + 3) – целые числа. Следовательно, данное уравнение эквивалентно следующей совокупности:

Теперь можно выписать всевозможные целые решения уравнения.

Задача 4. Решить в целых числах уравнение zt + t – 2z = 7.

Решение. Исходное уравнение можно преобразовать к виду (z + 1) (t – 2) = 5. Числа (z + 1), (t – 2) являются целыми, поэтому имеют место следующие варианты:

Итак, уравнение имеет ровно четыре целых решения.

Ключевая идея – представление уравнения в виде произведения, равного целому числу.

Задача 5. Решить в целых числах уравнение n (n + 1) = (2k + 1)‼

Решение. Число (2k + 1)‼ нечётно при всех неотрицательных значениях k согласно определению (при отрицательных k оно вообще не определено). С другой стороны, оно равно числу n (n + 1), которое чётно при всех целых значениях k . Противоречие.

Ключевая идея – использование чётности/нечётности частей уравнения.

Задача 6. Решить в целых числах уравнение xy + x + 2y = 1.

Решение. Путём преобразований уравнение можно свести к следующему:

Данное преобразование не изменило ОДЗ неизвестных, входящих в уравнение, так как подстановка y = –1 в первоначальное уравнение приводит к абсурдному равенству –2 = 1. Согласно условию, x – целое число. Иначе говоря, тоже целое число. Но тогда число обязано быть целым. Дробь является целым числом тогда и только тогда, когда числитель делится на знаменатель. Делители числа 3: 1,3 –1, –3. Следовательно, для неизвестной возможны четыре случая: y = 0, y = 2, y = –2, y = –4. Теперь можно вычислить соответствующие значения неизвестной x . Итак, уравнение имеет ровно четыре целых решения: (–5;0), (–5;2), (1;–2), (1;–4).

Ключевая идея – выражение одной неизвестной через другую.

Задача 7. m = n 2 + 2.

Решение. Если m = 0, то уравнение примет вид n 2 = –1. Оно не имеет целых решений. Если m < 0, то левая часть уравнения, а значит, и n , не будет являться целым числом. Значит, m > 0. Тогда правая часть уравнения (как и левая) будет кратна 5. Но в таком случае n 2 при делении на 5 должно давать остаток 3, что невозможно (это доказывается методом перебора остатков, который был изложен при решении задачи 1). Следовательно, данное уравнение не имеет решений в целых числах.

Ключевая идея – нахождение остатков от деления обеих частей уравнения на некоторое натуральное число.

Задача 8. Решить в целых числах уравнение (x !) 4 + (y – 1) 4 = (z + 1) 4 .

Решение. Заметим, что в силу чётности показателей степеней уравнение эквивалентно следующему: (x !) 4 + |y – 1| 4 = |z + 1| 4 . Тогда x !, |y – 1|, |z + 1| – натуральные числа. Однако, согласно Великой теореме Ферма, эти натуральные числа не могут удовлетворять исходному уравнению. Таким образом, уравнение неразрешимо в целых числах.

Ключевая идея – использование Великой теоремы Ферма.

Задача 9. Решить в целых числах уравнение x 2 + 4y 2 = 16xy .

Решение. Из условия задачи следует, что x – чётное число. Тогда x 2 = 4x 1 2 . Уравнение преобразуется к виду x 1 2 + y 2 = 8x 1 y . Отсюда вытекает, что числа x 1 , y имеют одинаковую чётность. Рассмотрим два случая.

1 случай . Пусть x 1 , y – нечётные числа. Тогда x 1 = 2t + 1, y = 2s + 1. Подставляя эти выражения в уравнение, получим:

Выполним соответствующие преобразования:

Сокращая обе части полученного уравнения на 2, получим?

В левой части стоит нечётное число, а в правой – чётное. Противоречие. Значит, 1 случай невозможен.

2 случай . Пусть x 1 , y – чётные числа. Тогда x 1 = 2x 2 + 1, y = 2y 1 . Подставляя эти значения в уравнение, получим:

Таким образом, получилось уравнение, точно такое же, как на предыдущем шаге. Исследуется оно аналогично, поэтому на следующем шаге получим уравнение и т.д. Фактически, проводя эти преобразования, опирающиеся на чётность неизвестных, мы получаем следующие разложения: . Но величины n и k не ограничены, так как на любом шаге (со сколь угодно большим номером) будем получать уравнение, эквивалентное предыдущему. То есть, данный процесс не может прекратиться. Другими словами, числа x , y бесконечно много раз делятся на 2. Но это имеет место, только при условии, что x = y = 0. Итак, уравнение имеет ровно одно целое решение (0; 0).

Ключевая идея – использование метода бесконечного спуска.

Задача 10. Решить в целых числах уравнение 5x 2 – 3xy + y 2 = 4.

Решение. Перепишем данное уравнение в виде 5x 2 – (3x )y + (y 2 – 4) = 0. Его можно рассмотреть как квадратное относительно неизвестной x . Вычислим дискриминант этого уравнения:

Для того чтобы уравнение имело решения, необходимо и достаточно, чтобы , то есть Отсюда имеем следующие возможности для y : y = 0, y = 1, y = –1, y = 2, y = –2.

Итак, уравнение имеет ровно 2 целых решения: (0;2), (0;–2).

Ключевая идея – рассмотрение уравнения как квадратного относительно одной из неизвестных.

Составленные автором задачи были использованы при проведении эксперимента, который состоял в следующем. Всем учащимся девятых классов были предложены разработанные задания с целью выявления уровня подготовки детей по данной теме. Каждому из учеников необходимо было предложить метод нахождения целочисленных решений уравнений. В эксперименте приняли участие 64 ученика. Полученные результаты представлены в таблице 1.

ТАБЛИЦА 1

Номер задания

Количество учащихся, справившихся с заданием (в процентах)

Данные показатели говорят о том, что уровень подготовки учащихся девятых классов по данной теме очень низкий. Поэтому целесообразной представляется организация спецкурса «Уравнения в целых числах», который будет направлен на усовершенствование знаний учеников в данной области. Прежде всего, это ученики, которые систематически участвуют в математических конкурсах и олимпиадах, а также планируют сдавать профильный ЕГЭ по математике.

Выводы

В ходе выполнения данной работы:

1) Проанализированы олимпиадные материалы, а также материалы ЕГЭ по математике;

2) Обозначены методы решения уравнений в целых числах и выделены преобладающие;

3) Полученные результаты проиллюстрированы примерами;

4) Составлены тренировочные задания для учащихся девятых классов;

5) Поставлен эксперимент по выявлению уровня подготовки по данной теме учащихся девятых классов;

6) Проанализированы результаты эксперимента и сделаны выводы о целесообразности изучения уравнений в целых числах на математическом спецкурсе.

Результаты, полученные в ходе данного исследования, могут быть использованы при подготовке к математическим олимпиадам, ЕГЭ по математике, а также при проведении занятий математического кружка.

Список литературы

1. Гельфонд А.О. Решение уравнений в целых числах. – М.: Наука, 1983 – 64 с.

2. Алфутова Н.Б. Устинов А.В. Алгебра и теория чисел. Сборник задач для математических школ – М.: МЦНМО, 2009 – 336 с.

3. Гальперин Г.А., Толпыго А.К. Московские математические олимпиады: Кн. для учащихся / Под ред. А.Н. Колмогорова. – М.: Просвещение, 1986. – 303 с., илл.

4. Далингер В.А. Задачи в целых числах – Омск: Амфора, 2010 – 132 с.

5. Гастев Ю. А., Смолянский М. Л. Несколько слов о Великой теореме Ферма // Квант, август 1972.

Глоссарий

Метод бесконечного спуска – метод, разработанный французским математиком П.Ферма (1601–1665), заключающийся в получении противоречия путём построения бесконечно убывающей последовательности натуральных чисел. Разновидность метода доказательства от противного.

Точный (полный) квадрат - квадрат целого числа.

Факториал натурального числа n - произведение всех натуральных чисел от 1 до n включительно.

В курсе математики 7 класса впервые встречаются с уравнениями с двумя переменными , но изучаются они лишь в контексте систем уравнений с двумя неизвестными. Именно поэтому из поля зрения выпадает целый ряд задач, в которых на коэффициенты уравнения введены некоторые условия, их ограничивающие. Кроме того, остаются без внимания и методы решения задач типа «Решить уравнение в натуральных или целых числах», хотя в материалах ЕГЭ и на вступительных экзаменах задачи такого рода встречаются все чаще и чаще.

Какое уравнение будет называться уравнением с двумя переменными?

Так, например, уравнения 5x + 2y = 10, x 2 + y 2 = 20 или xy = 12 являются уравнениями с двумя переменными.

Рассмотрим уравнение 2x – y = 1. Оно обращается в верное равенство при x = 2 и y = 3, поэтому эта пара значений переменных является решением рассматриваемого уравнения.

Таким образом, решением любого уравнения с двумя переменными является множество упорядоченных пар (x; y), значений переменных, которые это уравнение обращают в верное числовое равенство.

Уравнение с двумя неизвестными может:

а) иметь одно решение. Например, уравнение x 2 + 5y 2 = 0 имеет единственное решение (0; 0);

б) иметь несколько решений. Например, (5 -|x|) 2 + (|y| – 2) 2 = 0 имеет 4 решения: (5; 2), (-5; 2), (5; -2), (-5; -2);

в) не иметь решений. Например, уравнение x 2 + y 2 + 1 = 0 не имеет решений;

г) иметь бесконечно много решений. Например, x + y = 3. Решениями этого уравнения будут являться числа, сумма которых равна 3. Множество решений данного уравнения можно записать в виде (k; 3 – k), где k – любое действительное число.

Основными методами решения уравнений с двумя переменными являются методы, основанные на разложении выражений на множители, выделение полного квадрата, использование свойств квадратного уравнения, ограниченности выражений, оценочные методы. Уравнение, как правило, преобразовывают к виду, из которого можно получить систему для нахождения неизвестных.

Разложение на множители

Пример 1.

Решить уравнение: xy – 2 = 2x – y.

Решение.

Группируем слагаемые с целью разложения на множители:

(xy + y) – (2x + 2) = 0. Из каждой скобки вынесем общий множитель:

y(x + 1) – 2(x + 1) = 0;

(x + 1)(y – 2) = 0. Имеем:

y = 2, x – любое действительное число или x = -1, y – любое действительное число.

Таким образом, ответом являются все пары вида (x; 2), x € R и (-1; y), y € R.

Равенство нулю неотрицательных чисел

Пример 2.

Решить уравнение: 9x 2 + 4y 2 + 13 = 12(x + y).

Решение.

Группируем:

(9x 2 – 12x + 4) + (4y 2 – 12y + 9) = 0. Теперь каждую скобку можно свернуть по формуле квадрата разности.

(3x – 2) 2 + (2y – 3) 2 = 0.

Сумма двух неотрицательных выражений равна нулю, только если 3x – 2 = 0 и 2y – 3 = 0.

А значит, x = 2/3 и y = 3/2.

Ответ: (2/3; 3/2).

Оценочный метод

Пример 3.

Решить уравнение: (x 2 + 2x + 2)(y 2 – 4y + 6) = 2.

Решение.

В каждой скобке выделим полный квадрат:

((x + 1) 2 + 1)((y – 2) 2 + 2) = 2. Оценим значение выражений, стоящих в скобках.

(x + 1) 2 + 1 ≥ 1 и (y – 2) 2 + 2 ≥ 2, тогда левая часть уравнения всегда не меньше 2. Равенство возможно, если:

(x + 1) 2 + 1 = 1 и (y – 2) 2 + 2 = 2, а значит x = -1, y = 2.

Ответ: (-1; 2).

Познакомимся с еще одним методом решения уравнений с двумя переменными второй степени. Этот метод заключается в том, что уравнение рассматривается как квадратное относительно какой-либо переменной .

Пример 4.

Решить уравнение: x 2 – 6x + y – 4√y + 13 = 0.

Решение.

Решим уравнение как квадратное относительно x. Найдем дискриминант:

D = 36 – 4(y – 4√y + 13) = -4y + 16√y – 16 = -4(√y – 2) 2 . Уравнение будет иметь решение только при D = 0, т. е. в том случае, если y = 4. Подставляем значение y в исходное уравнение и находим, что x = 3.

Ответ: (3; 4).

Часто в уравнениях с двумя неизвестными указывают ограничения на переменные .

Пример 5.

Решить уравнение в целых числах: x 2 + 5y 2 = 20x + 2.

Решение.

Перепишем уравнение в виде x 2 = -5y 2 + 20x + 2. Правая часть полученного уравнения при делении на 5 дает в остатке 2. Следовательно, x 2 не делится на 5. Но квадрат числа, не делящегося на 5, дает в остатке 1 или 4. Таким образом, равенство невозможно и решений нет.

Ответ: нет корней.

Пример 6.

Решить уравнение: (x 2 – 4|x| + 5)(y 2 + 6y + 12) = 3.

Решение.

Выделим полные квадраты в каждой скобке:

((|x| – 2) 2 + 1)((y + 3) 2 + 3) = 3. Левая часть уравнения всегда больше или равна 3. Равенство возможно при условии |x| – 2 = 0 и y + 3 = 0. Таким образом, x = ± 2, y = -3.

Ответ: (2; -3) и (-2; -3).

Пример 7.

Для каждой пары целых отрицательных чисел (x; y), удовлетворяющих уравнению
x 2 – 2xy + 2y 2 + 4y = 33, вычислить сумму (x + y). В ответе указать наименьшую из сумм.

Решение.

Выделим полные квадраты:

(x 2 – 2xy + y 2) + (y 2 + 4y + 4) = 37;

(x – y) 2 + (y + 2) 2 = 37. Так как x и y – целые числа, то их квадраты также целые числа. Сумму квадратов двух целых чисел, равную 37, получим, если складываем 1 + 36. Следовательно:

(x – y) 2 = 36 и (y + 2) 2 = 1

(x – y) 2 = 1 и (y + 2) 2 = 36.

Решая эти системы и учитывая, что x и y – отрицательные, находим решения: (-7; -1), (-9; -3), (-7; -8), (-9; -8).

Ответ: -17.

Не стоит отчаиваться, если при решении уравнений с двумя неизвестными у вас возникают трудности. Немного практики, и вы сможете справиться с любыми уравнениями.

Остались вопросы? Не знаете, как решать уравнения с двумя переменными?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Нелинейные уравнения с двумя неизвестными

Определение 1 . Пусть A - некоторое множество пар чисел (x ; y ) . Говорят, что на множестве A задана числовая функция z от двух переменных x и y , если указано правило, с помощью которого каждой паре чисел из множества A ставится в соответствие некоторое число.

Задание числовой функции z от двух переменных x и y часто обозначают так:

где f (x , y ) – любая функция, отличная от функции

f (x , y ) = ax +by + c ,

где a , b , c – заданные числа.

Определение 3 . Решением уравнения (2) называют пару чисел (x ; y ) , для которых формула (2) является верным равенством.

Пример 1 . Решить уравнение

Поскольку квадрат любого числа неотрицателен, то из формулы (4) вытекает, что неизвестные x и y удовлетворяют системе уравнений

решением которой служит пара чисел (6 ; 3) .

Ответ : (6 ; 3)

Пример 2 . Решить уравнение

Следовательно, решением уравнения (6) является бесконечное множество пар чисел вида

(1 + y ; y ) ,

где y – любое число.

линейное

Определение 4 . Решением системы уравнений

называют пару чисел (x ; y ) , при подстановке которых в каждое из уравнений этой системы получается верное равенство.

Системы из двух уравнений, одно из которых линейное , имеют вид

g (x , y )

Пример 4 . Решить систему уравнений

Решение . Выразим из первого уравнения системы (7) неизвестное y через неизвестное x и подставим полученное выражение во второе уравнение системы:

Решая уравнение

x 1 = - 1 , x 2 = 9 .

Следовательно,

y 1 = 8 - x 1 = 9 ,
y 2 = 8 - x 2 = - 1 .

Системы из двух уравнений, одно из которых однородное

Системы из двух уравнений, одно из которых однородное , имеют вид

где a , b , c – заданные числа, а g (x , y ) – функция двух переменных x и y .

Пример 6 . Решить систему уравнений

Решение . Решим однородное уравнение

3x 2 + 2xy - y 2 = 0 ,

3x 2 + 17xy + 10y 2 = 0 ,

рассматривая его как квадратное уравнение относительно неизвестного x :

.

В случае, когда x = - 5y , из второго уравнения системы (11) получаем уравнение

5y 2 = - 20 ,

которое корней не имеет.

В случае, когда

из второго уравнения системы (11) получаем уравнение

,

корнями которого служат числа y 1 = 3 , y 2 = - 3 . Находя для каждого из этих значений y соответствующее ему значение x , получаем два решения системы: (- 2 ; 3) , (2 ; - 3) .

Ответ : (- 2 ; 3) , (2 ; - 3)

Примеры решения систем уравнений других видов

Пример 8 . Решить систему уравнений (МФТИ)

Решение . Введем новые неизвестные u и v , которые выражаются через x и y по формулам:

Для того, чтобы переписать систему (12) через новые неизвестные, выразим сначала неизвестные x и y через u и v . Из системы (13) следует, что

Решим линейную систему (14), исключив из второго уравнения этой системы переменную x . С этой целью совершим над системой (14) следующие преобразования.

Муниципальное общеобразовательное учреждение

Саврушская средняя общеобразовательная школа

Похвистневский район Самарская область

Реферат по математике на тему:

«Уравнения с двумя

неизвестными

в целых числах »

Выполнили: Колесова Татьяна

Староверова Нина

у ченицы 10 класса

МОУ Саврушская СОШ

Похвистневского района

Самарской области.

Руководитель: Ятманкина Галина Михайловна

учитель математики.

Савруха 2011

Введение._______________________________________________3

1. Историческая справка _______________________________________5

1.1 Теоремы о числе решений линейных диофантовых уравнений___6

1.2 Алгоритм решения уравнения в целых числах_________________ 6

1.3 Способы решения уравнений_______________________________ 7

Глава 2. Применение способов решения уравнений.

1. Решение задач_____________________________________________ 8

2.1 Решение задач с помощью алгоритма Евклида________________ 8

2.2 Способ перебора вариантов________________________________ 9

2.3 Метод разложения на множители___________________________ 9

2.4 Метод остатков__________________________________________ 12

2. Задачи экзаменационного уровня___________________________ 13

Заключение________________________________________________ 16

Список используемой литературы_____________________________ 17

« Кто управляет числами,

Тот управляет миром»

Пифагор.

Введение.

Анализ ситуации: Диофантовы уравнения это актуальная в наше время тема, т. к. решение уравнений, неравенств, задач, сводящихся к решению уравнений в целых числах с помощью оценок для переменных, встречается в различных математических сборниках и сборниках ЕГЭ.

Изучив разные способы решения квадратного уравнения с одной переменной на уроках, нам было интересно разобраться, а как решаются уравнения с двумя переменными. Такие задания встречаются на олимпиадах и в материалах ЕГЭ.

В этом учебном году одиннадцатиклассникам предстоит сдавать Единый государственный экзамен по математике, где КИМы составлены по новой структуре. Нет части «А», но добавлены задания в часть «В» и часть «С». Составители объясняют добавление С6 тем, что для поступления в технический ВУЗ нужно уметь решать задания такого высокого уровня сложности.

Проблема : Решая примерные варианты заданий ЕГЭ, мы заметили, что чаще всего встречаются в С6 задания на решение уравнений первой и второй степени в целых числах. Но мы не знаем способы решения таких уравнений. В связи с этим возникла необходимость изучить теорию таких уравнений и алгоритм их решения.

Цель: Освоить способ решения уравнений с двумя неизвестными первой и второй степени в целых числах.

Задачи: 1) Изучить учебную и справочную литературу;

2) Собрать теоретический материал по способам решения уравнений;

3) Разобрать алгоритм решения уравнений данного вида;

4) Описать способ решения.

5) Рассмотреть ряд примеров с применением данного приема.

6) Решить уравнения с двумя переменными в целых числах из

материалов ЕГЭ-2010 С6.

Объект исследования : Решение уравнений

Предмет исследования : Уравнения с двумя переменными в целых числах.

Гипотеза: Данная тема имеет большое прикладное значение. В школьном курсе математики подробно изучаются уравнения с одной переменной и различные способы их решения. Потребности учебного процесса требуют, чтобы ученики знали и умели решать простейшие уравнения с двумя переменными. Поэтому повышенное внимание к этой теме не только оправдано, но и является актуальной в школьном курсе математики.

Данная работа может быть использована для изучения данной темы на факультативных занятиях учениками, при подготовке к выпускным и вступительным экзаменам. Мы надеемся, что наш материал поможет старшеклассникам научиться решать уравнения такого вида.

Глава 1. Теория уравнений с двумя переменными в целых числах.

1. Историческая справка.

Диофант и история диофантовых уравнений .

Решение уравнений в целых числах является одной из древнейших математических задач. Наибольшего расцвета эта область математики достигла в Древней Греции. Основным источником, дошедшим до нашего времени, является произведение Диофанта – «Арифметика». Диофант суммировал и расширил накопленный до него опыт решения неопределенных уравнений в целых числах.

История сохранила нам мало черт биографии замечательного александрийского ученого-алгебраиста Диофанта. По некоторым данным Диофант жил до 364 года н.э. Достоверно известно лишь своеобразное жизнеописание Диофанта, которое по преданию было высечено на его надгробии и представляло задачу-головоломку:

«Бог ниспослал ему быть мальчиком шестую часть жизни; добавив к сему двенадцатую часть, Он покрыл его щеки пушком; после седьмой части Он зажег ему свет супружества и через пять лет после вступления в брак даровал ему сына. Увы! Несчастный поздний ребенок, достигнув меры половины полной жизни отца, он был унесен безжалостным роком. Через четыре года, утешая постигшее его горе наукой о числах, он [Диофант] завершил свою жизнь» (примерно 84 года).

Эта головоломка служит примером тех задач, которые решал Диофант. Он специализировался на решении задач в целых числах. Такие задачи в настоящее время известны под названием диофантовых.

Наиболее известной, решенной Диофантом, является задача «о разложении на два квадрата». Ее эквивалентом является известная всем теорема Пифагора. Эта теорема была известна в Вавилонии, возможно ее знали и в Древнем Египте, но впервые она была доказана, в пифагорейской школе. Так называлась группа интересующихся математикой философов по имени основателя школы Пифагора (ок. 580-500г. до н.э.)

Жизнь и деятельность Диофанта протекала в Александрии, он собирал и решал известные и придумывал новые задачи. Позднее он объединил их в большом труде под названием «Арифметика». Из тринадцати книг, входивших в состав «Арифметики», только шесть сохранились до Средних веков и стали источником вдохновения для математиков эпохи Возрождения.

1.1 Теоремы о числе решений линейного диофантового уравнения.

Приведем здесь формулировки теорем, на основании которых может быть составлен алгоритм решения неопределенных уравнений первой степени от двух переменных в целых числах.

Теорема 1. Если в уравнении , , то уравнение имеет, по крайней мере, одно решение.

Теорема 2. Если в уравнении , и с не делится на , то уравнение целых решений не имеет.

Теорема 3. Если в уравнении , и , то оно равносильно уравнению , в котором .

Теорема 4. Если в уравнении , , то все целые решения этого уравнения заключены в формулах:

где х 0 , у 0

1.2. Алгоритм решения уравнения в целых числах.

Сформулированные теоремы позволяют составить следующий алгоритм решения в целых числах уравнения вида .

1. Найти наибольший общий делитель чисел a и b ,

если и с не делится на , то уравнение целых решений не имеет;

если и , то

2. Разделить почленно уравнение на , получив при этом уравнение , в котором .

3. Найти целое решение (х 0 , у 0 ) уравнения путем представления 1 как линейной комбинации чисел и ;

4. Составить общую формулу целых решений данного уравнения

где х 0 , у 0 – целое решение уравнения , - любое целое число.

1.3 Способы решения уравнений

При решении уравнений в целых и натуральных числах можно условно выделить следующие методы:

1. Способ перебора вариантов.

2. Алгоритм Евклида.

3. Цепные дроби.

4. Метод разложения на множители.

5. Решение уравнений в целых числах как квадратных относительно какой-либо переменной.

6. Метод остатков.

7. Метод бесконечного спуска.

Глава 2. Применение способов решения уравнений

1. Примеры решения уравнений.

2.1 Алгоритм Евклида.

Задача 1 . Решить уравнение в целых числах 407х – 2816y = 33.

Воспользуемся составленным алгоритмом.

1. Используя алгоритм Евклида, найдем наибольший общий делитель чисел 407 и 2816:

2816 = 407·6 + 374;

407 = 374·1 + 33;

374 = 33·11 + 11;

Следовательно (407,2816) = 11, причем 33 делится на 11

2. Разделим обе части первоначального уравнения на 11, получим уравнение 37х – 256y = 3, причем (37, 256) = 1

3. С помощью алгоритма Евклида найдем линейное представление числа 1 через числа 37 и 256.

256 = 37·6 + 34;

Выразим 1 из последнего равенства, затем последовательно поднимаясь по равенствам будем выражать 3; 34 и полученные выражения подставим в выражение для 1.

1 = 34 – 3·11 = 34 – (37 – 34·1) ·11 = 34·12 – 37·11 = (256 – 37·6) ·12 – 37·11 =

– 83·37 – 256·(–12)

Таким образом, 37·(– 83) – 256·(–12) = 1, следовательно пара чисел х 0 = – 83 и у 0 = – 12 есть решение уравнения 37х – 256y = 3.

4. Запишем общую формулу решений первоначального уравнения

где t - любое целое число.

2.2 Способ перебора вариантов.

Задача 2. В клетке сидят кролики и фазаны, всего у них 18 ног. Узнать, сколько в клетке тех и других?

Решение: Составляется уравнение с двумя неизвестными переменными, в котором х – число кроликов, у – число фазанов:

4х + 2у = 18, или 2х + у = 9.

Выразим у через х : у = 9 – 2х.

Таким образом, задача имеет четыре решения.

Ответ: (1; 7), (2; 5), (3; 3), (4; 1).

2.3 Метод разложения на множители.

Перебор вариантов при нахождении натуральных решений уравнения с двумя переменными оказывается весьма трудоемким. Кроме того, если уравнение имеет целые решения, то перебрать их невозможно, так как таких решений бесконечное множество. Поэтому покажем еще один прием - метод разложения на множители.

Задача 3. Решить уравнение в целых числах y 3 - x 3 = 91.

Решение. 1) Используя формулы сокращенного умножения, разложим правую часть уравнения на множители:

(y - x )(y 2 + xy + x 2) = 91……………………….(1)

2) Выпишем все делители числа 91: ± 1; ± 7; ± 13; ± 91

3) Проводим исследование. Заметим, что для любых целых x и y число

y 2 + yx + x 2 ≥ y 2 - 2|y ||x | + x 2 = (|y | - |x |) 2 ≥ 0,

следовательно, оба сомножителя в левой части уравнения должны быть положительными. Тогда уравнение (1) равносильно совокупности систем уравнений:

; ; ;

4) Решив системы, получим: первая система имеет решения (5; 6), (-6; -5); третья (-3; 4),(-4;3); вторая и четвертая решений в целых числах не имеют.

Ответ: уравнение (1) имеет четыре решения (5; 6); (-6; -5); (-3; 4); (-4;3).

Задача 4. Найти все пары натуральных чисел, удовлетворяющих уравнению

Решение. Разложим левую часть уравнения на множители и запишем уравнение в виде

.

Т.к. делителями числа 69 являются числа 1, 3, 23 и 69, то 69 можно получить двумя способами: 69=1·69 и 69=3·23. Учитывая, что , получим две системы уравнений, решив которые мы сможем найти искомые числа:

Первая система имеет решение , а вторая система имеет решение .

Ответ: .

Задача 5.

Решение. Запишем уравнение в виде

.

Разложим левую часть уравнения на множители. Получим

.

Произведение двух целых чисел может равняться 1 только в двух случаях: если оба они равны 1 или -1. Получим две системы:

Первая система имеет решение х=2, у=2, а вторая система имеет решение х=0, у=0.

Ответ: .

Задача 6. Решить в целых числах уравнение

.

Решение . Запишем данное уравнение в виде

Разложим левую часть уравнения на множители способом группировки, получим

.

Произведение двух целых чисел может равняться 7 в следующих случаях:

7=1· 7=7·1=-1·(-7)=-7·(-1).Таким образом, получим четыре системы:

Или , или , или .

Решением первой системы является пара чисел х = - 5, у = - 6. Решая вторую систему, получим х = 13, у = 6.Для третьей системы решением являются числа х = 5, у = 6. Четвёртая система имеет решение х = - 13, у = - 6.

Задача 7. Доказать, что уравнение (x - y ) 3 + (y - z ) 3 + (z - x ) 3 = 30 не

имеет решений в целых числах.

Решение. 1) Разложим левую часть уравнения на множители и обе части уравнения разделим на 3, в результате получим уравнение:

(x - y )(y - z )(z - x ) = 10…………………………(2)

2) Делителями 10 являются числа ±1, ±2, ±5, ±10. Заметим также, что сумма сомножителей левой части уравнения (2) равна 0. Нетрудно проверить, что сумма любых трех чисел из множества делителей числа 10, дающих в произведении 10, не будет равняться 0. Следовательно, исходное уравнение не имеет решений в целых числах.

Задача 8. Решить уравнение: х 2 - у 2 =3 в целых числах.

Решение:

1. применим формулу сокращенного умножения х 2 - у 2 =(х-у)(х+у)=3

2. найдем делители числа 3 = -1;-3;1;3

3. Данное уравнение равносильно совокупности 4 систем:

Х-у=1 2х=4 х=2, у=1

Х-у=3 х=2, у=-1

Х-у=-3 х=-2, у=1

Х-у=-1 х=-2, у=-1

Ответ: (2;1), (2;-1), (-2;1), (-2,-1)

2.4 Метод остатков.

Задача 9 . Решить уравнение: х 2 +ху=10

Решение:

1. Выразим переменную у через х: у= 10-х 2

У = - х

2. Дробь будет целой, если х Є ±1;±2; ±5;±10

3. Найдем 8 значений у.

Если х=-1, то у= -9 х=-5, то у=3

Х=1, то у=9 х=5, то у=-3

Х=-2 ,то у=-3 х=-10, то у=9

Х=2, то у=3 х=10, то у=-9

Задача 10. Решить уравнение в целых числах:

2х 2 -2ху +9х+у=2

Решение:

выразим из уравнения то неизвестное, которое входит в него только в первой степени - в данном случае у:

2х 2 +9х-2=2ху-у

У =

выделим у дроби целую часть с помощью правила деления многочлена на многочлен «углом». Получим:

Следовательно, разность 2х-1 может принимать только значения -3,-1,1,3.

Осталось перебрать эти четыре случая.

Ответ : (1;9), (2;8), (0;2), (-1;3)

2. Задачи экзаменационного уровня

Рассмотрев несколько способов решения уравнений первой степени с двумя переменными в целых числах, мы заметили, что чаще всего применяются метод разложения на множители и метод остатков.

Уравнения, которые даны в вариантах ЕГЭ -2011, в основном решаются методом остатков.

1. Решить в натуральных числах уравнение: , где т>п

Решение:

Выразим переменную п через переменную т

(у+10) 2 < 6 -2 ≤ у+10 ≤ 2 -12 ≤ у ≤ -8

(у+6) 2 < 5 -2 ≤ у+6 ≤ 2 -8 ≤ у ≤ -4 у=-8

Ответ: (12; -8)

Заключение.

Решение различного вида уравнений является одной из содержательных линий школьного курса математики, но при этом методы решения уравнений с несколькими неизвестными практически не рассматриваются. Вместе с тем, решение уравнений от нескольких неизвестных в целых числах является одной из древнейших математических задач. Большинство методов решения таких уравнений основаны на теории делимости целых чисел, интерес к которой в настоящее время определяется бурным развитием информационных технологий. В связи с этим, учащимся старших классов будет небезынтересно познакомиться с методами решения некоторых уравнений в целых числах, тем более что на олимпиадах разного уровня очень часто предлагаются задания, предполагающие решение какого-либо уравнения в целых числах, а в этом году такие уравнения включены еще и в материалы ЕГЭ.

В своей работе мы рассматривали только неопределенные уравнения первой и второй степени. Уравнения первой степени, как мы увидели, решаются довольно просто. Мы выделили виды таких уравнений и алгоритмы их решений. Также было найдено общее решение таких уравнений.

С уравнениями второй степени сложнее, поэтому мы рассмотрели лишь частные случаи: теорему Пифагора и случаи, когда одна часть уравнения имеет вид произведения, а вторая раскладывается на множители.

Уравнениями третьей и больше степеней занимаются великие математики, потому что их решения слишком сложны и громоздки

В дальнейшем мы планируем углубить свое исследование в изучении уравнений с несколькими переменными, которые применяются в решении задач

Литература.

1. Березин В.Н. Сборник задач для факультативных и внеклассных занятий по математике. Москва « Просвещение» 1985г.

2. Галкин Е.Г. Нестандартные задачи по математике. Челябинск «Взгляд» 2004г.

3. Галкин Е.Г. Задачи с целыми числами. Челябинск «Взгляд» 2004г.

4. Глейзер Е.И. История математики в школе. Москва «Просвещение» 1983г.

5. Мордкович А.Г. Алгебра и начала анализа 10-11 класс. Москва 2003г.

6. Математика. ЕГЭ 2010. Федеральный институт

педагогических измерений.

7. Шарыгин И. Ф. Факультативный курс по математике. Решение

задач. Москва 1986г.

Прошлый видеоматериал был посвящен линейным уравнениям, содержащим две переменные. Мы рассмотрели основные свойства подобных выражений, возможности их преобразования и решения, а также графическое отображение зависимости между двумя переменными.

Известно, что подавляющее большинство этих уравнений имеют множество ответов, представленных всегда парой чисел. Эта пара - значения х и у. Рассмотрим возможные варианты корней уравнения следующего вида:

Очевидно, что корнями данного уравнения может быть пара (4, 6):

Или же дроби 1/5 и 1/3:

5(1/5) - 3(1/3) = 2

В обеих случаях получается верное равенство, значит обе пары корней приемлемы в качестве решения представляемого уравнения. Но при этом одна пара является дробями, а вторая представлена целыми числами. Корни уравнений с двумя переменными, имеющие значения в целых числах именуются цельно численными.
Довольно часто в математике встречаются задачи, требующие именно целочисленные решения подобных уравнений. С другой стороны, некоторые вариации, вроде:

Не имеют цельно численных решений вообще. Так как при любых целых значениях х и у получится целое общее выражение левой части (2х + 3у), которое никак не может быть равно дроби - то есть, нарушится принцип сохранения равенства.
Рассмотрим возможные решения уравнения:

Переведем его в форму зависимости, используя перенос через знак равенства и тождественные преобразования:

Вполне очевидно, что сохраняется равенство вида:

Где n - любое натуральное число, которое вполне может быть целым по значению. То есть, уравнение 7х - у = -1 обладает множеством целочисленных решений. Проверим любые целые числа в качестве х:

х = -3; у = -26

Нам уже известна общая абстрактная формула для определения любого линейного уравнения с двумя переменными:

Где х и у - переменные, а и b - коэффициенты при переменных, а с - свободный член. Любое уравнение, подобное линейным выражениям с х и у, путем равносильных преобразований можно привести к такому абстрактному виду. Подробное изучение общей формулы позволяет с легкостью выявить некоторые закономерности с точки зрения наличия целочисленных решений. Итак, если задано некое уравнение вида:

При котором свободный член является дробью, то корнями уравнения никак не могут быть цельно численные выражения. Сумма или разность двух целых чисел по закону элементарной алгебры не может быть равна дробному выражению.

Из-за большого количества возможных решений, корни уравнений с двумя переменными иногда имеют вид не пары отдельных чисел, а пары двух индивидуальных формул - для х, и для у. Для примера, решим уравнение:

Для этого, нам необходимо совершить ряд преобразований. Разобьем одночлен 20х на тождественную сумму 18х + 2х:

20х = 18х+ 2х

18х + 2х + 3у = 10

Группируем одночлены, имеющие кратные числовые коэффициенты. Стоит отметить, что переменную х необходимо разбивать на сумму так, что бы получился х с коэффициентом максимально большим и кратным при этом для числового коэффициента переменной у. Так как в нашем примере при у стоит тройка, то х мы разбиваем с максимально допустимым коэффициентом, кратным трем. После группировки выносим общий кратный множитель:

18х + 2х + 3у = 10

18х + 3у + 2х = 10

3(6х + у) + 2х = 10

Пусть выражение в скобках (6х + у) равно некой переменной с, тогда:

3(6х + у) + 2х = 10

Разбиваем значение переменной с по такому же принципу, как разбивали коэффициент при х. При этом нам необходимо подобрать некое число, которое будет кратно двойке (значению при 2х), но не больше трех. Очевидно, что это будет так:

2с + с + 2х =10

Проводим тождественные изменения:

2с + с + 2х =10

2(с + х) + с = 10

Обозначим содержимое скобок, как n, тогда:

2(с + х) + с = 10

Подставляем получившееся равенство вместо с:

3(10 - 2n) + 2х = 10

И решаем полученное уравнение относительно переменной х:

3(10 - 2n) + 2х = 10

30 - 6n + 2х = 10

2х = 10 + 6n - 30

То уместно записать:

6х + у = n - х

Подставляем известную нам формулу для х, что бы вычислить у:

6х + у = n - х

6(- 10 + 3n) + у = n - (- 10 + 3n)

60 + 18n + у = n + 10 - 3n

у = n + 10 - 3n + 60 - 18n

Корнями уравнения 20х + 3у = 10 являются два выражения вида:

Где n - любое целое число - 0, 1, 2 и т.д. Таким образом, чтобы описать все многообразие возможных целочисленных решений, проще всего вычислить некоторые формулы для быстрого расчета х и у. Подставляя любые выражения n в эти формулы, можно с легкостью получить искомую пару чисел.

Loading...Loading...