Точка пересечения прямой и плоскости. Определение точки пересечения прямой с плоскостью Как найти точку пересечения прямой и плоскости

Линия пересечения двух плоскостей - прямая линия. Рассмотрим сначала частный случай (рис. 3.9), когда одна из пересекающихся плоскостей параллельна горизонтальной плоскости проекций (α π 1 , f 0 α Х). В этом случае линия пересечения а, принадлежащая плоскости α, будет также параллельна плоскости π 1 , (рис. 3.9. а), т. е. будет совпадать с горизонталью пересекающихся плоскостей (а ≡ h).

Если одна из плоскостей параллельна фронтальной плоскости проекций (рис. 3.9. б), то линия пересечения а, принадлежащая этой плоскости, будет параллельна плоскости π 2 и будет совпадать с фронталью пересекающихся плоскостей (а ≡ f).

.

.

Рис. 3.9. Частный случай пересечения плоскости общего положения с плоскостями: а - горизонтального уровня; б - фронтального уровня

Пример построения точки пересечения (К) прямой а (АВ) с плоскостью α (DEF) показан на рис. 3.10. Для этого прямая а заключена в произвольную плоскость β и определена линия пересечения плоскостей α и β.

В рассматриваемом примере прямые АВ и MN принадлежат одной плоскости β и пересекаются в точке К, а так как прямая MN принадлежит заданной плоскости α (DEF), то точка К является и точкой пересечения прямой а (АВ) с плоскостью α. (рис. 3.11).

.

Рис. 3.10. Построение точки пересечения прямой с плоскостью

Для решения подобной задачи на комплексном чертеже необходимо уметь находить точку пересечения прямой общего положения с плоскостью общего положения.

Рассмотрим пример нахождения точки пересечения прямой АВ c плоскостью треугольника DEF представленный на рис. 3.11.

Для нахождения точки пересечения через фронтальную проекцию прямой А 2 В 2 проведена фронтально-проецирующая плоскость β которая пересекла треугольник в точках M и N. На фронтальной плоскости проекций (π 2) эти точки представлены проекциями M 2 , N 2 . Из условия принадлежности прямой плоскости на горизонтальной плоскости проекций (π 1) находятся горизонтальные проекции полученных точек M 1 N 1 . В пересечении горизонтальных проекций прямых А 1 В 1 и M 1 N 1 образуется горизонтальная проекция точки их пересечения (К 1). По линии связи и условиям принадлежности на фронтальной плоскости проекций находится фронтальная проекция точки пересечения (К 2).

.

Рис. 3.11. Пример определения точки пересечения прямой и плоскости

Видимость отрезка АВ относительно треугольника DEF определена методом конкурирующих точек.

На плоскости π 2 рассмотрены две точки NEF и 1АВ. По горизонтальным проекциям этих точек можно установить, что точка N расположена ближе к наблюдателю (Y N >Y 1), чем точка 1 (направление луча зрения параллельно S). Следовательно, прямая АВ, т. е. часть прямой АВ (К 1) закрыта плоскостью DEF на плоскости π 2 (ее проекция К 2 1 2 показана штриховой линии). Аналогично установлена видимость на плоскости π 1 .

Вопросы для самоконтроля

1) В чем заключается сущность метода конкурирующих точек?

2) Какие свойства прямой вы знаете?

3) Каков алгоритм определения точки пересечения прямой и плоскости?

4) Какие задачи называются позиционными?

5) Сформулируйте условия принадлежности прямой плоскости.

Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

77*. Найти точку пересечения прямой АВ с плоскостью, заданной треугольником CDE (рис. 75, а).

Решение. Как известно, для нахождения точки пересечения прямой с плоскостью общего положения следует через прямую провести вспомогательную плоскость (R), построить линию пересечения этой плоскости с заданной (1-2) и найти

точку пересечения (К) заданной и построенной прямых. Точка К является искомой точкой пересечения прямой с плоскостью (рис. 75, б). В качестве вспомогательной плоскости обычно используют горизонтально- или фронтально-проецирующую плоскость.

На рис. 75, в через прямую АВ проведена фронтально-проецирующая плоскость R, ее след R ϑ совпадает с а"в". горизонт. след плоскости в данной задаче не нужен и поэтому не показан.

Строим линию пересечения плоскости R и плоскости, заданной треугольником CDE (пример такого построения см. в задаче 67). Построив линию 1-2 (рис. 75, в), находим точку пересечения ее с прямой АВ - точку К (k, k").

Для определения участков прямой АВ, которые будут закрыты треугольником, следует воспользоваться анализом положения точек на скрещивающихся прямых.

Например, точки 1 и 3 находятся на скрещивающихся прямых (соответственно) ED и АВ. Фронтальные проекции этих точек совпадают, т. е. точки 1 и 3 одинаково удалены от пл. Н. Но расстояния их от пл. V различны: точка 3 находится дальше от пл. V, чем точка 1. Поэтому по отношению к пл. V точка 3 закрывает точку 1 (направление взгляда указано стрелкой S). Следовательно, прямая АВ проходит перед треугольником CDE до точки К. Начиная же от точки К влево прямая АВ закрывается треугольником, и поэтому этот участок прямой показан штриховой линией.


Для выявления невидимого участка на горизонт. проекции прямой АВ рассмотрим точки 4 и 5, лежащие соответственно на прямых АВ и CD.

Если смотреть на эти точки по направлению s 1 , мы видим сначала точку 5. Точка 4 закрывается точкой 5. Следовательно, прямая АВ в этом месте закрыта треугольником CDE, и участок ее проекции от точки k до точки 4 должен быть показан штриховой линией. В данном случае точка К оказалась внутри контура треугольника CDE.

При ином взаимном положении пересекающихся элементов возможен случай, когда точка К окажется вне треугольника (рис. 75, г). Это означает, что прямая АВ пересекает плоскость, заданную треугольником CDE, вне контура этого треугольника. АВ становится невидимой за точкой К (влево).

78. Найти точки пересечения прямой АВ с гранями пирамиды (рис. 76). Грани пирамиды следует рассматривать как плоскости, заданные треугольниками.

79. Найти точки пересечения прямой АВ с гранями призмы (рис. 77). Грани призмы следует рассматривать как плоскости, заданные параллельными прямыми.

80*. Найти точки пересечения прямой АВ с плоскостью Р (рис. 78, а).

Решение. Проводим через прямую АВ (рис. 78, бив) фронтально-проецирующую плоскость R (ее след R ϑ совпадает с а"b") и строим линию MN пересечения обеих плоскостей - заданной и проведенной через АВ (построение подобно выполненному в задаче 70). Искомая точка К(k, k") пересечения прямой АВ с плоскостью Р находится в точке пересечения MN с АВ.

В данной задаче видимость участка прямой от точки А до К очевидна; однако в более сложных случаях следует видимый участок прямой определять на основании



анализа положения точек. Например, взяв точку 1 (на прямой АВ) и точку N (на следе Р ϑ). видим, что точка 1 располагается дальше относительно пл. V, чем точка N. Следовательно, прямая АВ до точки К видима. За точкой К прямая показана штриховой линией она невидима. Аналогично определяется видимость на горизонт. проекции.



81. Найти точку пересечения прямой АВ с плоскостью Р (рис. 79).

82*. Найти точку пересечения прямой АВ с плоскостью Р (рис. 80, а).

Решение. Через прямую АВ проводим горизонтально-проецирующую плоскость R (след R h совпадает с ab) и строим линию пересечения плоскостей Р и R,

используя точки М и N пересечения их одноименных следов (рис. 80, б и в). Искомая точка (k", k) находится в точке пересечения МN с АВ. На рис, 80, г точка К построена с помощью пл. W. Так как пл. Р профильно-проецирующая (рис. 80, б).

то профильная проекция k" лежит в точке пересечения следа P ω с а"b". Зная k", строим k" на а"b" и k на аb. Видимые участки прямой АВ определяются так же, как в задачах 77 и 80.

83. Найти точку пересечения прямой АВ с плоскостью Р (рис. 81).

84*. Найти точку пересечения прямой АВ с плоскостью, заданной треугольником CDE (рис. 82, а).

Решение. Через прямую АВ проводим (рис. 82, б и в) пл. R, параллельную пл. W. Она пересекает заданную плоскость по прямой MN (точки m", n", m и n лежат на пересечении следов R ϑ и R h с одноименными проекциями соответствующих сторон


треугольника CDE). Так как прямые АВ и MN профильные, то для нахождения точки (К) их пересечения строим профильные проекции а"b" и m"n". Проекция k" находится на пересечении а"b" и m"m". По k" строим k" на а"b" и k на ab.

85. Найти точку пересечения прямой EF с плоскостью, заданной четырехугольником ABCD (рис. 83).

Дана прямая: (1) и плоскость: Ax + By + Cz + D = 0 (2).

Найдем координаты точки пересечения прямой и плоскости. Если прямая (1) и плоскость (2) пересекаются, то координаты точки пересечения удовлетворяют уравнениям (1) и (2):

, .

Подставляя найденное значение t в (1), получим координаты точки пересечения.

1) Если Am + Bn + Cp = 0, а Ax 0 + By 0 + Cz 0 + D ≠ 0, то и t не существует, т.е. прямая и плоскость не имеют ни одной общей точки. Они параллельны.

2) Am + Bn + Cp = 0 и Ax 0 + By 0 + Cz 0 + D = 0. В этом случае t может принимать любые значения и , т.е. прямая параллельна плоскости и имеет с ней общую точку, т.е. она лежит в плоскости.

Пример 1. Найти точку пересечения прямой с плоскостью 3x – 3y + 2z – 5 = 0.

3(2t – 1) – 3(4t + 3) + 2·3t – 5 = 0 => -17=0, что невозможно ни при одном t, т.е. прямая и плоскость не пересекаются.

Пример 2. Найти точку пересечения прямой и плоскости: x + 2y – 4z + 1 = 0.

8t + 13 + 2(2t + 1) – 4(3t + 4) + 1 = 0, 0 + 0 = 0. Это верно при любом значении t, т.е. прямая лежит в плоскости.

Пример 3. Найти точку пересечения прямой и плоскости 3x – y + 2z – 5 = 0.

3(5t + 7) – t – 4 + 2(4t + 5) – 5 = 0, 22t + 22 = 0, t = -1, x = 5(-1) + 7 = 2, y = -1 + 4 = 3, z = 4(-1) + 5 = 1, M(2, 3, 1) – точка пересечения прямой и плоскости.

Угол между прямой и плоскостью. Условия параллельности и перпендикулярности прямой и плоскости.

Углом между прямой и плоскостью называется острый угол ц между прямой и ее проекцией на плоскость.

Пусть заданы прямая и плоскость:

и .

Пусть прямая пересекает плоскость и образует с ней угол ц (). Тогда б = 90 0 – ц или б = 90 0 + ц – это угол между нормальным вектором плоскости и направляющим вектором прямой . Но . Значит

(3).

а) Если L P, то - условие перпендикулярности прямой и плоскости.

б) Если L||P, то - условие параллельности прямой и плоскости.

в) Если прямая L||P и при этом точка M0(x0, y0, z0) P, то прямая лежит в данной плоскости. Аналитически:

- условия принадлежности прямой и плоскости.

Пример. Дана прямая и точка М 0 (1, 0, –2). Через точку М 0 провести плоскость, перпендикулярную данной прямой. Уравнение искомой плоскости ищем в виде: A(x – 1) + B(y – 0) + C(z + 2) = 0. В данном случая , ,



5(x – 1) – 5y + 5(z + 2) = 0, - x – y + z + 3 = 0.

Пучок плоскостей.

Пучок плоскостей – множество всех плоскостей, проходящих через заданную прямую – ось пучка.

Чтобы задать пучок плоскостей, достаточно задать его ось. Пусть уравнение этой прямой задано в общем виде:

.

Составить уравнение пучка – значит составить уравнение, из которого можно получить при дополнительном условии уравнение любой плоскости пучка, кроме, б.м. одной. Умножим II уравнение на л и сложим с I уравнением:

A 1 x + B 1 y + C 1 z + D 1 + л(A 2 x + B 2 y + C 2 z + D 2) = 0 (1) или

(A 1 + лA 2)x + (B 1 + лB 2)y + (C 1 + лC 2)z + (D 1 + лD 2) = 0 (2).

л – параметр – число, которое может принимать действительные значения. При любом выбранном значении л уравнения (1) и (2) линейные, т.е. это – уравнения некоторой плоскости.

1. Покажем, что эта плоскость проходит через ось пучка L. Возьмем произвольную точку M 0 (x 0 , y 0 , z 0) L. Следовательно, М 0 Р 1 и М 0 Р 2 . Значит:

3x – y + 2z + 9 + 17x + 17z – 51 = 0; 20x – y + 19z – 42 = 0 .

Пример 3 (Э). Составить уравнение плоскости, проходящей через прямую перпендикулярно плоскости x – 2y + z + 5 = 0. ; 3x – 2y + z – 3 + л(x – 2z) = 0; (3 + л)x – 2y + (1 – 2 л)z – 3 = 0; ; ; л = 8; 11x – 2y – 15z – 3 = 0 .

Если прямая не лежит в плоскости и не параллельна ей, она пересекает плоскость.
Задача на определение точки пересечения прямой с плоскостью сводится к следующему:
1) проведению вспомогательной плоскости (Вспомогательную плоскость рекомендуется выбирать такую, которая даст наиболее простое графическое решение задачи ) через данную прямую;
2) нахождению линии пересечения вспомогательной плоскости с данной плоскостью;
3) определению точки пересечения данной прямой с линией пересечения плоскостей, а следовательно, с данной плоскостью.


Пример 1. На (фиг.250,а) даны плоскость δ (δ 1 ) и прямая АВ (А 1 В 1 и А 2 В 2 ); требуется определить точку их пересечения.

В этом случае нет надобности прибегать к вспомогательной плоскости, так как данная плоскость δ - горизонтально - проектирующая. По свойству проектирующих плоскостей горизонтальная проекция точки пересечения, лежащая в плоскости δ , сливается с горизонтальной проекцией δ 1 .
Поэтому точка К 1 пересечения горизонтальной проекции А 1 В 1 прямой АВ с горизонтальной проекцией δ 1 есть горизонтальная проекция точки пересечения К ; фронтальная проекция К 2 определяется путем проведения вертикальной линии связи до пересечения ее с фронтальной проекцией А 2 В 2 .
Пример 2 . На (фиг.250,б) приведен пример пересечения прямой АВ с фронтально - проектирующей плоскостью δ .

Пример 1. Даны: плоскость общего положения а и прямая общего положения АВ (А 1 В 1 А 2 В 2 ); требуется найти точку их пересечения (фиг.251,а).
Проводим через прямую АВ какую - либо вспомогательную плоскость, например горизонтально - проектирующую плоскость δ (δ 1 ), как показано на (фиг.251,б); она пересечет плоскость a по прямой NM (N 1 M 1 , N 2 М 2 ), которая, в свою очередь, пересечет прямую АВ (А 1 В 1 А 2 В 2 ) в точке С (С 1 С 2 ), что видно на (фиг.251,в). Точка С есть точка пересечения прямой АВ с плоскостью а .

Пример 2. На (фиг.252) приведен пример нахождения проекций точки пересечения прямой AB c плоскостью общего положения при помощи горизонтали h .
Пример 3. Даны: треугольник ABC и прямая NM ; требуется определить точку их пересечения (фиг.253,а).
Возьмем в качестве вспомогательной плоскости горизонтально - проектирующую плоскость δ , тогда горизонтальная проекция ог сольется с горизонтальной проекцией N 1 M 1 прямой NM и пересечет проекции сторон треугольника в точках Е 1 и F 1 (фиг.253,б). Отрезок Е 1 F 1 будет горизонтальной проекцией линии пересечения. Затем находим фронтальную проекцию линии пересечения: при помощи вертикальных линий связи получаем точки Е 2 и F 2 , проводим через них прямую E 2 F 2 , которая будет фронтальной проекцией линии пересечения.
Прямая E 2 F 2 пересекает прямую N 2 М 2 в точке К 2 . Точка К 2 будет фронтальной проекцией точки пересечения прямой MN с прямой EF ; горизонтальную проекцию K 1 этой точки определяем при помощи вертикальной линии связи.
Точка К (K 1 , К 2 ) будет точкой пересечения данной прямой MN с данным треугольником ABC , как одновременно им принадлежащая, потому что прямая MN пересекается в ней с прямой EF , лежащей в плоскости треугольника ABC .

Упражнение 1
Построить комплексный чертеж треугольника ABC по данным координатам вершин. Найти натуральную величину сторон треугольника и построить его в натуральную величину. По этим же координатам построить наглядное изображение
Упражнение 2
По данным фронтальной проекции многоугольника и горизонтальным проекциям двух смежных сторон его достроить горизонтальную проекцию многоугольника.
В плоскости многоугольника построить проекции произвольного треугольника. Построить точку вне многоугольника, но лежащую в одной плоскости с ним (

Рассмотрим случаи: 1) когда проецирующую поверхность пересекает проецирующая плоскость; 2) когда проецирующую поверхность пересекает плоскость общего положения. В обоих случаях для построения сечения на эпюре используем алгоритм проецирующей фигуры (алгоритм № 1). В первом случае на чертеже уже известны...
(Начертательная геометрия)
  • Построение линии пересечения двух плоскостей по точкам пересечения прямых линий с плоскостью
    На рисунке 2.60 дано построение линии пересечения двух треугольников АВС и DEF с указанием видимых и невидимых участков этих треугольников. Рисунок 2.60 Прямая К,К2 построена по точкам пересечения сторон АС и ВС треугольника АВС с плоскостью треугольника DEF. ...
    (Инженерная графика)
  • Частные случаи
    При умеренных давлениях (Ре « 1000 атм.) жидкую фазу (например, воду) можно полагать несжимаемой (Ре = const). В этом случае система уравнений для этой несжимаемой среды может быть еще более упрощена и приведена к следующему виду: где, а гидростатическими силами (членом уе7) для...
    (Основы кавитационной обработки многокомпонентных сред)
  • Частные случаи равновесия в непрерывных системах Барометрическое уравнение
    Барометрическое уравнение устанавливает зависимость давления газа по высоте. Существуют восходящие еще к Лапласу многочисленные методы вывода этого уравнения. В данном случае воспользуемся тем, что газ, находящийся в поле силы тяжести, является непрерывной системой, содержащей один компонент - газ с...
    (Термодинамика в современной химии)
  • ЧАСТНЫЕ СЛУЧАИ ВЗАИМНОЙ ПАРАЛЛЕЛЬНОСТИ И ПЕРПЕНДИКУЛЯРНОСТИ ПРЯМОЙ И ПЛОСКОСТИ. ЧАСТНЫЕ СЛУЧАИ ВЗАИМНОЙ ПЕРПЕНДИКУЛЯРНОСТИ ДВУХ ПЛОСКОСТЕЙ
    Если плоскость является проецирующей, то любая одноименно проецирующая прямая параллельна этой плоскости, потому что в плоскости всегда можно найти одноименно проецирующую прямую. Так, на рис. 67 изображены плоскости: Т 1Щ, ФJL Ш, Г1 Пз. Этим плоскостям будут параллельны прямые: а || Т (а 1 Пг);...
    (Начертательная геометрия)
  • ОБЩИЕ СЛУЧАИ. СПОСОБ ПОСРЕДНИКОВ
    Для нахождения точек пересечения прямой линии с поверхностью Ф способом посредников желательно прямую заключать в такую плоскость- посредник Т, которая пересекает заданную поверхность Ф по точной линии - прямой или окружности. Обзор и классификация различных видов таких плоскостей даны ранее (см....
    (Начертательная геометрия)
  • СПОСОБ ПОСРЕДНИКОВ
    Если заданы произвольно обе плоскости общего положения, то задачу можно решить способом посредников в соответствии с алгоритмом № 2. В качестве посредниковвыбирают две плоскости Т и Т1 - проецирующие или уровня (рис. 254). В случае пересечения двух плоскостей алгоритм № 2 запишем так: 1. Выбор Т и Т1....
    (Начертательная геометрия)
  • Loading...Loading...