Построение днк. Как происходит синтез белка закодированного определенным геном? Модель строения ДНК

Химический состав ДНК и её макромолекулярная организация. Типы спиралей ДНК. Молекулярные механизмы рекомбинации, репликации и репарации ДНК. Понятие о нуклеазах и полимеразах. Репликация ДНК как условие передачи генетической информации потомкам. Общая характеристика процесса репликации. Действия, происходящие в вилке репликации. Репликация теломеров, теломераза. Значение недорепликации конечных фрагментов хромосом в механизме старения. Системы исправления ошибок репликации. Корректорские свойства ДНК-полимераз. Механизмы репарации поврежденной ДНК. Понятие о заболеваниях репарации ДНК. Молекулярные механизмы общей генетической рекомбинации. Сайт-специфическая рекомбинация. Генная конверсия.

В 1865г. Грегор Мендель открыл гены, а его современник Фридрих Мишер в 1869г. открыл нуклеиновые кислоты (в ядрах клеток гноя и сперматозоидов лосося). Однако долго еще эти открытия не связывали друг с другом, долго еще структуру и природу вещества наследственности не знали. Генетическая роль НК была установлена после открытия и объяснения явлений трансформации (1928, Ф.Гриффитс; 1944, О. Эвери), трансдукции (1951, Ледерберг, Циндер) и размножения бактериофагов (1951, А. Херши, М. Чейз).

Трансформация, трансдукция и размножение бактериофагов убедительно доказали генетическую роль ДНК. У РНК - содержащих вирусов (СПИДа, гепатита В, гриппа, ВТМ, лейкоза мышей и др.) эту роль выполняет РНК.

Строение нуклеиновых кислот . НК - биополимеры, участвующие в хранении и передаче генети­ческой информации. Мономеры НК - нуклеотиды, состоящие из азо­тистого основания, моносахарида и одной или нескольких фосфатных групп. В составе НК все нуклеотиды являются монофосфа­тами. Нуклеотид без фосфатной группы называется нуклеозидом. Сахар, входящий в состав НК, представляет собой D-изомер и β-аномер рибозы или 2-дезоксирибозы. Нуклеотиды, содержащие рибозу, называ­ются рибонуклеотидами и являются мономерами РНК, а нуклеотиды - производные дезоксирибозы, являются дезоксирибонуклеотидами, и из них состоит ДНК. Азотистые основания бывают двух типов: пурины - аденин, гуанин и пиримидины - цитозин, тимин, урацил. В состав РНК и ДНК входят аденин, гуанин, цитозин; урацил встречается только в РНК, а тимин только в ДНК.

В ряде случаев в НК присутствуют редко встречающиеся минор­ные нуклеотиды, такие как дигидроуридин, 4-тиоуридин, инозин и др. Разнообразие их особенно велико у тРНК. Минор­ные нуклеотиды образуются в результате химических превращений оснований НК, происходящих уже после образования полимерной цепи. Чрезвычайно распространены в РНК и ДНК различные метилированные производные: 5-метилуридин, 5-метилцитидин, l-N-метиладенозин, 2-И-метилгуанозин. У РНК объектом метилирования могут быть и 2"-гидроксигруппы остатков рибозы, что приводит к обра­зованию 2"-О-метилцитидина или 2"-О-метилгуанозина.

Рибонуклеотидные и дезоксирибонуклеотидные звенья соединяют­ся между собой с помощью фосфодиэфирных мостиков, связывающих 5"-гидроксильную группу одного нуклеотида с 3"-гидроксильной груп­пой следующего. Таким образом, регулярная основная цепь образована фосфатными и рибозными остатками, а основания присо­единены к сахарам подобно тому, как присоединены боковые группы в белках. Порядок следования оснований вдоль цепи называется пер­вичной структурой НК. Последовательность оснований принято читать в направлении от 5"- к 3"- углеродному атому пентозы.

Структура ДНК. Модель структуры ДНК в виде двойной спирали была предложена Уотсоном и Криком в 1953 г (рис.7).

Согласно этой трехмерной модели, молекула ДНК состоит из двух противоположно направленных полинуклеотидных цепей, которые относительно одной и той же оси образуют правую спираль. Азотистые основания находятся внутри двойной спирали, и их плоскости перпендикулярны основной оси, а сахарофосфатные остатки экспонированы наружу. Между основаниями образуются специфические Н-связи: аденин - тимин (или урацил), гуанин - цитозин, получившие название уотсон-криковского спаривания. В результате более объемные пурины всегда взаимодействуют с пиримидинами, имеющими меньшие размеры, что обеспечивает оптимальную геометрию остова. Антипараллельные цепи двойной спирали не являются идентичными ни по последовательнос­ти оснований, ни по нуклеотидному составу, но они комплементарны друг другу именно благодаря наличию специфического водородного связывания между указанными выше основаниями.

Комплементарность очень важна для копирования (репликации) ДНК. Соотношения между числом различных оснований в ДНК, выявленные

Рис.7. В - форма ДНК

Чарграффом с соавт. в 50-х гг., имели большое значе­ние для установления структуры ДНК: было показано, что число адениновых остатков в основаниях цепи ДНК, независимо от организма, равно числу тиминовых, а число гуаниновых - числу цитозиновых. Эти равенства являются следствием избирательного спаривания оснований (рис.8).

Геометрия двойной спирали такова, что соседние пары основа­ний находятся друг от друга на расстоянии 0.34 нм и повернуты на 36° вокруг оси спирали. Следовательно, на один виток спирали прихо­дится 10 пар оснований, и шаг спирали равен 3.4 нм. Диаметр двой­ной спирали равен 20 нм и в ней образуются два желобка - большой и малый. Это связано с тем, что сахарофосфатный остов расположен дальше от оси спирали, чем азотистые основания.

Стабильность структуры ДНК обусловлена разными типами взаимо­действия, среди которых основными являются Н-связи между основа­ниями и межплоскостное взаимодействие (стэкинг). Благодаря послед­нему обеспечиваются не только выгодные ван-дер-ваальсовы контакты между атомами, но и возникает

Рис.8. Принцип комплементарности и антипараллельности цепей ДНК

дополнительная стабилизация вслед­ствие перекрывания р-орбиталей атомов параллельно расположенных оснований. Стабилизации способствует также благоприятный гидрофобный эффект, проявляющийся в защищенности малополярных ос­нований от непосредственного контакта с водной средой. Напротив, сахарофосфатный остов с его полярными и ионизированными группами экспонирован, что также стабилизирует структуру.

Для ДНК известны четыре полиморфные формы: А, В, С и Z. Обычной структурой является В-ДНК, в которой плоскости пар оснований перпендикулярны оси двойной спирали (рис.7.). В А-ДНК плоско­сти пар оснований повернуты примерно на 20° от нормали к оси пра­вой двойной спирали; на виток спирали здесь приходится 11 пар ос­нований. В С-ДНК на витке спирали 9 пар оснований. Z-ДНК - это левая спираль с 12 парами оснований на виток; плоскости оснований примерно перпендикулярны оси спирали. ДНК в клетке обычно находится в В-форме, но отдельные ее участки могут находиться в A, Z или даже в иной конформации.

Двойная спираль ДНК не застывшее образование, она находится в постоянном движении:

· деформируются связи в цепях;

· раскрываются и закрываются комплементарные пары оснований;

· ДНК взаимодействует с белками;

· если напряжение в молекуле велико, то она локально расплетается;

· правая спираль переходит в левую.

Различают 3 фракции ДНК:

1.Частоповторяемая (сателлитная) – до 106 копий генов (у мыши 10%). Она не участвует в синтезе белка; разделяет гены; обеспечивает кроссинговер; содержит транспозоны.

2.Слабоповторяемая – до 102 - 103 копий генов (у мыши 15%). Содержит гены синтеза т-РНК, гены синтеза белков рибосом и белков хроматина.

3.Уникальная (неповторяемая) – у мыши 75% (у человека 56%). Состоит из структурных генов.

Локализация ДНК: 95 % ДНК локализуется в ядре в хромосомах (линейные ДНК) и 5 % - в митохондриях, пластидах и клеточном центре в виде кольцевой ДНК.

Функции ДНК : хранение и передача информации; репарация; репликация.

Две цепи ДНК в области гена принципиально различаются по своей функциональной роли: одна из них является кодирую­щей, или смысловой, вторая - матричной.

Это значит, что в процессе «считывания» гена (транскрипции или синтеза пре-мРНК) в качестве матрицы выступает матричная цепь ДНК. Продукт же этого процесса-пре-мРНК - по последовательности нуклеотидов совпадает с кодирующей цепью ДНК (с заменой тиминовых основа­ний на урациловые).

Таким образом, получается, что с помощью матричной цепи ДНК при транскрипции воспроизводится в структуре РНК генетическая информация кодирующей цепи ДНК.

Главными матричными процессами, присущими всем живым орга­низмам, являются репликация ДНК, транскрипция и трансляция.

Репликация - процесс, при котором информация, закодирован­ная в последовательности оснований молекулы родительской ДНК, передается с максимальной точностью дочерней ДНК. При полукон­сервативной репликации дочерние клетки первого поколения полу­чают одну цепь ДНК от родителей, а вторая цепь является вновь синтезированной. Процесс осуществляется при участии ДНК-полимераз, которые относятся к классу трансфераз. Роль матрицы играют разделенные цепи двунитевой материнской ДНК, а субстратами яв­ляются дезоксирибонуклеозид-5"-трифосфаты.

Транскрипция - процесс переноса генетической информации от ДНК к РНК. Все виды РНК - мРНК, рРНК и тРНК - синтезируют­ся в соответствии с последовательностью оснований в ДНК, служа­щей матрицей. Транскрибируется только одна, так называемая «+»-цепь ДНК. Процесс протекает при участии РНК-полимераз. Субстратами являются рибонуклеозид-5"-трифосфаты.

Процессы репликации и транскрипции у прокариот и эукариот существенно различаются по скорости протекания и по отдельным механизмам.

Трансляция - процесс декодирования мРНК, в результате которого информация с языка последовательности оснований мРНК перево­дится на язык аминокислотной последовательности белка. Осуще­ствляется трансляция на рибосомах, субстратами являются аминоацил-тРНК.

Матричный синтез ДНК, катализируемый ДНК-полимеразами, выполняет две основные функции: репликацию ДНК - синтез но­вых дочерних цепей и репарацию двунитевых ДНК, имеющих разры­вы в одной из цепей, образовавшихся в результате вырезания нуклеазами поврежденных участков этой цепи. У прокариот и эукариот существует три разновидности ДНК-полимераз. У прокариот выделе­ны полимеразы I, II и III типов, обозначаемые как pol l, pol ll и pol III. Последняя катализирует синтез растущей цепи, pol играет важную роль в процессе созревания ДНК, функции pol ll изучены не полно­стью. В эукариотических клетках в репликации хромосом участвует ДНК-полимераза ά, в репарации - ДНК-полимераза β, а γ разновид­ность является ферментом, осуществляющим репликацию ДНК митохондрий. Эти Ферменты, независимо от типа клеток, в которых происходит реплика­ция, присоединяют нуклеотид к ОН-группе на З"-конце одной из цепей ДНК, которая растет в направлении 5"→3. Поэтому говорят, что дан­ные Ф обладают 5"→3"-полимеразной активностью. Помимо этого все они проявляют способность деградировать ДНК, отщепляя, нуклеотиды в направлении 3"→5, т. е. являются 3"→5"-экзонуклеазами.

В 1957 г. Мезельсон и Сталь, изучая E. coli установили, что на каждой свободной цепи фермент ДНК-полимераза строит новую, комплементарную цепь. Это полукон­сервативный способ репликации: одна цепь старая – другая новая!

Обычно репликация начинается в строго определенных участках, получивших название участков ori (от origin of replication), и от этих участков распространяется в обе стороны. Участкам ori предшеству­ют точки разветвления материнских цепей ДНК. Участок, примыка­ющий к точке разветвления, получил название репликативной вилки (рис.9). В ходе синтеза репликативная вилка перемещается вдоль молекулы, при этом расплетаются все новые участки родительской ДНК до тех пор, пока вилка не дойдет до точки терминации. Разделе­ние цепей достигается с помощью специальных Ф - геликаз (топоизомераз). Энергия, необходимая для этого, высвобождается за счет гидролиза АТФ. Геликазы перемещаются вдоль полинуклеотидных цепей в двух направлениях.

Для начала синтеза ДНК необходима затравка - праймер. Роль праймера выполняет короткая РНК (10-60 нуклеотидов). Она синте­зируется комплементарно определенному участку ДНК при участии праймазы. После образования праймера в работу включается ДНК-полимераза. В отличие от геликаз ДНК-полимеразы могут переме­щаться только от 3" к 5" концу матрицы. Поэтому элонгация расту­щей цепи по мере раскручивания двунитевой материнской ДНК мо­жет идти только вдоль одной цепи матрицы, той, относительно которой вилка репликации движется от 3" к 5" концу. Непрерывно синтезиру­емая цепь получила название лидирующей. Синтез на запаздывающей цепи также начинается с образования праймера и идет в направлении, противоположном ведущей цепи - от вилки репликации. Запаздыва­ющая цепь синтезируется фрагментарно (в виде фрагментов Оказа­ки), т. к. праймер образуется только тогда, когда вилка репликации освободит тот участок матрицы, который имеет сродство к праймазе. Лигирование (сшивание) фрагментов Оказаки с образованием еди­ной цепи носит название процесса созревания.

При созревании цепи РНК-затравка удаляется как с 5" конца ве­дущей цепи, так и с 5" концов фрагментов Оказаки, а эти фрагменты сшиваются друг с другом. Удаление затравки осуществляется при уча­стии 3"→5" экзонуклеазы. Этот же Ф вместо удаленной РНК присо­единяет дезоксинуклеотиды, используя свою 5"→3" полимеразную активность. При этом в случае присоединения «неправильного» нуклеотида осуществляется «корректорская правка» - удаление основа­ний, образующих некомплементарные пары. Этот процесс обеспечи­вает чрезвычайно высокую точность репликации, отвечающую одной ошибке на 109 пар оснований.

Рис.9. Репликация ДНК:

1 - репликативная вилка, 2 - ДНК-полимераза (pol I - созревание);

3 - ДНК-полимераза (pol III - «корректорская правка»); 4-геликаза;

5-гираза (топоизомераза); 6-белки, дестабилизирующие двойную спираль.


Коррекция осу­ществляется в тех случаях, когда к З"-концу расту­щей цепи присоединяется «неправильный» нуклеотид, неспособный образовать нужные водородные связи с матрицей. Когда pol III ошибочно при­соединяет неправильное основание, «включается» ее 3" -» 5"-экзонуклеазная активность, и это основа­ние немедленно удаляется, после чего восстанавли­вается полимеразная активность. Такой простой механизм действует благодаря тому, что pol III способна работать как полимераза лишь на совер­шенной двойной спирали ДНК с абсолютно пра­вильным спариванием оснований.

Еще один механизм удаления РНК-фрагментов основан на присутствии в клетках особой рибонуклеазы, получившей название РНКазы Н. Этот Ф специфичен к двунитевым структурам, построенным из одной рибонуклеотидной и одной дезоксирибонуклеотидной цепи, причем он гидролизует первую из них.

РНКаза Н также способна удалять РНК-праймер с последующей за­стройкой разрыва с помощью ДНК-полимеразы. На заключительных этапах сборки фрагментов в нужном порядке действует ДНК-лигаза, катализирующая образование фосфодиэфирной связи.

Раскручивание геликазами части двойной спирали ДНК в хромо­сомах эукариот приводит к сверхспирализации остальной части струк­туры, что неизбежно сказывается на скорости процесса репликации. Сверхспирализации препятствуют ДНК-топоизомеразы.

Таким образом, в репликации ДНК, помимо ДНК-полимеразы, принимает участие большой набор Ф: геликаза, праймаза, РНКаза Н, ДНК-лигаза и топоизомераза. Этим перечень Ф и белков, участвую­щих в матричном биосинтезе ДНК, далеко не исчерпывается. Однако многие из участников этого процесса до настоящего времени остают­ся мало изученными.

В процессе репликации происходит «корректорская правка» - удаление непра­вильных (образующих некомплементарные пары) оснований, включенных во вновь синтезированную ДНК. Этот процесс обеспечивает чрезвычайно вы­сокую точность репликации, отвечающую одной ошибке на 109 пар оснований.

Теломеры. В 1938г. классики генетики Б.Мак-Клинтон и Г. Мёллер доказали, что на концах хромосом есть специальные структуры, которые назвали теломерами (телос-конец, мерос-часть).

Ученые обнаружили, что при воздействии рентгеновским облучением устойчивость проявляют лишь теломеры. Напротив, лишенные концевых участков, хромосомы начинают сливаться, что ведет к тяжелым генетическим аномалиям. Т.о., теломеры обеспечивают индивидуальность хромосом. Теломеры плотно упакованы (гетерохроматин) и малодоступны для ферментов (теломеразы, метилазы, эндонуклеаз и др.)

Функции теломер.

1.Механические: а) соединение концов сестринских хроматид после S-фазы; б) фиксация хромосом к ядерной мембране, что обеспечивает конъюгацию гомологов.

2.Стабилизационные: а) предохранение от недорепликации генетически значимых отделов ДНК (теломеры не транскрибируются); б) стабилизация концов разорванных хромосом. У больных α - талассемией в генах α - глобина происходят разрывы хромосомы 16д и к поврежденному концу добавляются теломерные повторы (ТТАГГГ).

3.Влияние на экспрессию генов. Активность генов, расположенных рядом с теломерами, снижена. Это проявление сайленсинга – транскрипционное молчание.

4.«Счетная функция». Теломеры выступают в качестве часового устройства, которое отсчитывает количество делений клетки. Каждое деление укорачивает теломеры на 50-65 н.п. А всего их длина в клетках эмбриона человека составляет 10-15 тысяч н.п.

Теломерная ДНК попала в поле зрения биологов совсем недавно. Первые объекты исследования – одноклеточные простейшие – ресничная инфузория (тетрахимена), которая содержит несколько десятков тысяч очень мелких хромосом и, значит, множество теломер в одной клетке (у высших эукариот менее 100 теломер на клетку).

В теломерной ДНК инфузории многократно повторяются блоки из 6-ти нуклеотидных остатков. Одна цепь ДНК содержит блок 2 тимин – 4 гуанин (ТТГГГГ - Г-цепь), а комплементарная цепь - 2 аденин – 4 цитозин (ААЦЦЦЦ - Ц-цепь).

Каково же было удивление ученых, когда обнаружили, что теломерная ДНК человека отличается от таковой у инфузории всего лишь одной буквой и образует блоки 2 тимин – аденин – 3 гуанин (ТТАГГГ). Более того, оказалось, что из ТТАГГГ - блоков построены теломеры (Г – цепь) всех млекопитающих, рептилий, амфибий, птиц и рыб.

Впрочем, удивляться здесь нечему, так как в теломерной ДНК не закодировано никаких белков (она не содержит гены). У всех организмов теломеры выполняют универсальные функции, речь о которых шла выше. Очень важная характеристика теломерных ДНК – их длина. У человека она колеблется от 2 до 20 тысяч пар оснований, а у некоторых видов мышей может достигать сотен тысяч н.п. Известно, что около теломер есть специальные белки, обеспечивающие их работу и участвующие в построении теломер.

Доказано, что для нормального функционирования каждая линейная ДНК должна иметь две теломеры: по одной теломере на каждый конец.

У прокариот теломеров нет – их ДНК замкнута в кольцо.

Справа крупнейшая спираль ДНК человека, выстроенная из людей на пляже в Варне (Болгария), вошедшая в книгу рекордов Гиннесса 23 апреля 2016 года

Дезоксирибонуклеиновая кислота. Общие сведения

ДНК (дезоксирибонуклеиновая кислота) - своеобразный чертеж жизни, сложный код, в котором заключены данные о наследственной информации. Эта сложная макромолекула способна хранить и передавать наследственную генетическую информацию из поколения в поколение. ДНК определяет такие свойства любого живого организма как наследственность и изменчивость. Закодированная в ней информация задает всю программу развития любого живого организма. Генетически заложенные факторы предопределяют весь ход жизни как человека, так и любого др. организхма. Искусственное или естественное воздействие внешней среды способны лишь в незначительной степени повлиять на общую выраженность отдельных генетических признаков или сказаться на развитии запрограммированных процессов.

Дезоксирибонуклеи́новая кислота (ДНК) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК содержит информацию о структуре различных видов РНК и белков.

В клетках эукариот (животных, растений и грибов) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами.

С химической точки зрения ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы (С ) и фосфатной (Ф ) группы (фосфодиэфирные связи).


Рис. 2. Нуклертид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы

В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула закручена по винтовой линии.

В ДНК встречается четыре вида азотистых оснований (аденин, гуанин, тимин и цитозин). Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин соединяется только с тимином (А-Т ), гуанин — только с цитозином (Г-Ц ). Именно эти пары и составляют «перекладины» винтовой "лестницы" ДНК (см.: рис. 2, 3 и 4).


Рис. 2. Азотистые основания

Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные (мРНК), рибосомальные (рРНК) и транспортные (тРНК). Все эти типы РНК синтезируются на матрице ДНК за счёт копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе транскрипции, и принимают участие в биосинтезе белков (процессе трансляции). Помимо кодирующих последовательностей, ДНК клеток содержит последовательности, выполняющие регуляторные и структурные функции.


Рис. 3. Репликация ДНК

Расположение базовых комбинаций химических соединений ДНК и количественные соотношения между этими комбинациями обеспечивают кодирование наследственной информации.

Образование новой ДНК (репликация)

  1. Процесс репликации: раскручивание двойной спирали ДНК — синтез комплементарных цепей ДНК-полимеразой — образование двух молекул ДНК из одной.
  2. Двойная спираль «расстегивается» на две ветви, когда ферменты разрушают связь между базовыми парами химических соединений.
  3. Каждая ветвь является элементом новой ДНК. Новые базовые пары соединяются в той же последовательности, что и в родительской ветви.

По завершении дупликации образуются две самостоятельные спирали, созданные из химических соединений родительской ДНК и имеющие с ней одинаковый генетический код. Таким путем ДНК способна перерывать информацию от клетки к клетке.

Более подробная информация:

СТРОЕНИЕ НУКЛЕИНОВЫХ КИСЛОТ


Рис. 4 . Азотистые основания: аденин, гуанин, цитозин, тимин

Дезоксирибонуклеиновая кислота (ДНК) относится к нуклеиновым кислотам. Нуклеиновые кислоты - это класс нерегулярных биополимеров, мономерами которых являются нуклеотиды.

Нуклеотиды состоят из азотистого основания , соединенного с пятиуглеродным углеводом (пентозой) - дезоксирибозой (в случае ДНК) или рибозой (в случае РНК), который соединяется с остатком фосфорной кислоты (H 2 PO 3 -).

Азотистые основания бывают двух типов: пиримидиновые основания - урацил (только в РНК), цитозин и тимин, пуриновые основания - аденин и гуанин.


Рис. 5. Типы азотистых оснований: пиримидиновые и пуриновые

Атомы углерода в молекуле пентозы нумеруются числами от 1 до 5. Фосфат соединяется с третьим и пятым атомами углерода. Так нуклеинотиды соединяются в цепь нуклеиновой кислоты. Таким образом, мы можем выделить 3’ и 5’-концы цепи ДНК:


Рис. 6. Выделение выделить 3’ и 5’-концов цепи ДНК

Две цепи ДНК образуют двойную спираль . Эти цепи в спирали сориентированы в противоположных направлениях. В разных цепях ДНК азотистые основания соединены между собой с помощью водородных связей . Аденин всегда соединяется с тимином, а цитозин - с гуанином. Это называется правилом комплементарности .

Правило комплементарности:

A-T G-C

Например, если нам дана цепь ДНК, имеющая последовательность

3’- ATGTCCTAGCTGCTCG - 5’,

то вторая ей цепь будет комплементарна и направлена в противоположном направлении - от 5’-конца к 3’-концу:

5’- TACAGGATCGACGAGC- 3’.


Рис. 7. Направленность цепей молекулы ДНК и соединение азотистых оснований с помощью водородных связей

РЕПЛИКАЦИЯ

Репликация ДНК - это процесс удвоения молекулы ДНК путем матричного синтеза. Репликация происходит по полуконсервативному механизму . Это значит, что двойная спираль ДНК расплетается и на каждой из ее цепей по принципу комплементарности достраивается новая цепь. Дочерняя молекула ДНК, таким образом, содержит в себе одну цепь от материнской молекулы и одну вновь синтезированную. Репликация происходит в направлении от 3’ к 5’ концу материнской цепи.

Рис. 8. Репликация (удвоение) молекулы ДНК

ДНК-синтез - это не такой сложный процесс, как может показаться на первый взгляд. Если подумать, то для начала нужно разобраться, что же такое синтез. Это процесс объединения чего-либо в одно целое. Образование новой молекулы ДНК проходит в несколько этапов:

  • ДНК-топоизомераза, располагаясь перед вилкой репликации, разрезает ДНК для того, чтобы облегчить ее расплетание и раскручивание.
  • ДНК-хеликаза вслед за топоизомеразой влияет на процесс «расплетения» спирали ДНК.
  • Связывающие ДНК-белки осуществляют связывание нитей ДНК, а также проводят их стабилизацию, не допуская их прилипания друг к другу.
  • ДНК-полимераза синтезирует ведущую цепь дочерней ДНК.


Рис. 9. Схематическое изображение процесса репликации, цифрами отмечены: (1) Запаздывающая нить, (2) Лидирующая нить, (3) ДНК-полимераза (Polα), (4) ДНК-лигаза, (5) РНК-праймер, (6) Праймаза, (7) Фрагмент Оказаки, (8) ДНК-полимераза (Polδ), (9) Хеликаза, (10) Белки, связывающие одноцепочечную ДНК, (11) Топоизомераза

Строение РНК

Рибонуклеиновая кислота (РНК) — одна из трёх основных макромолекул (две другие — ДНК и белки), которые содержатся в клетках всех живых организмов.

Так же, как ДНК, РНК состоит из длинной цепи, в которой каждое звено называется нуклеотидом. Каждый нуклеотид состоит из азотистого основания, сахара рибозы и фосфатной группы. Однако в отличие от ДНК, РНК обычно имеет не две цепи, а одну. Пентоза в РНК представлена рибозой, а не дезоксирибозой (у рибозы присутствует дополнительная гидроксильная группа на втором атоме углевода). Наконец, ДНК отличается от РНК по составу азотистых оснований: вместо тимина (Т ) в РНК представлен урацил (U ) , который также комплементарен аденину.

Последовательность нуклеотидов позволяет РНК кодировать генетическую информацию. Все клеточные организмы используют РНК (мРНК) для программирования синтеза белков.

Клеточные РНК образуются в ходе процесса, называемого транскрипцией , то есть синтеза РНК на матрице ДНК, осуществляемого специальными ферментами — РНК-полимеразами.

Затем матричные РНК (мРНК) принимают участие в процессе, называемом трансляцией, т.е. синтеза белка на матрице мРНК при участии рибосом. Другие РНК после транскрипции подвергаются химическим модификациям, и после образования вторичной и третичной структур выполняют функции, зависящие от типа РНК.

Рис. 10. Отличие ДНК от РНК по азотистому основанию: вместо тимина (Т) в РНК представлен урацил (U), который также комплементарен аденину.

ТРАНСКРИПЦИЯ

Это процесс синтеза РНК на матрице ДНК. ДНК раскручивается на одном из участков. На одной из цепей содержится информация, которую необходимо скопировать на молекулу РНК - эта цепь называется кодирующей. Вторая цепь ДНК, комплементарная кодирующей, называется матричной. В процессе транскрипции на матричной цепи в направлении 3’ - 5’ (по цепи ДНК) синтезируется комплементарная ей цепь РНК. Таким образом, создается РНК-копия кодирующей цепи.

Рис. 11. Схематическое изображение транскрипции

Например, если нам дана последовательность кодирующей цепи

3’- ATGTCCTAGCTGCTCG - 5’,

то, по правилу комплементарности, матричная цепь будет нести последовательность

5’- TACAGGATCGACGAGC- 3’,

а синтезируемая с нее РНК - последовательность

ТРАНСЛЯЦИЯ

Рассмотрим механизм синтеза белка на матрице РНК, а также генетический код и его свойства. Также для наглядности по ниже приведенной ссылке рекомендуем посмотреть небольшое видео о процессах транскрипции и трансляции, происходящих в живой клетке:

Рис. 12. Процесс синтеза белка: ДНК кодирует РНК, РНК кодирует белок

ГЕНЕТИЧЕСКИЙ КОД

Генетический код - способ кодирования аминокислотной последовательности белков с помощью последовательности нуклеотидов. Каждая аминокислота кодируется последовательностью из трех нуклеотидов - кодоном или триплетом.

Генетический код, общий для большинства про- и эукариот. В таблице приведены все 64 кодона и указаны соответствующие аминокислоты. Порядок оснований — от 5" к 3" концу мРНК.

Таблица 1. Стандартный генетический код

1-е
основа

ние

2-е основание

3-е
основа

ние

U

C

A

G

U

U U U

(Phe/F)

U C U

(Ser/S)

U A U

(Tyr/Y)

U G U

(Cys/C)

U

U U C

U C C

U A C

U G C

C

U U A

(Leu/L)

U C A

U A A

Стоп-кодон**

U G A

Стоп-кодон**

A

U U G

U C G

U A G

Стоп-кодон**

U G G

(Trp/W)

G

C

C U U

C C U

(Pro/P)

C A U

(His/H)

C G U

(Arg/R)

U

C U C

C C C

C A C

C G C

C

C U A

C C A

C A A

(Gln/Q)

C GA

A

C U G

C C G

C A G

C G G

G

A

A U U

(Ile/I)

A C U

(Thr/T)

A A U

(Asn/N)

A G U

(Ser/S)

U

A U C

A C C

A A C

A G C

C

A U A

A C A

A A A

(Lys/K)

A G A

A

A U G

(Met/M)

A C G

A A G

A G G

G

G

G U U

(Val/V)

G C U

(Ala/A)

G A U

(Asp/D)

G G U

(Gly/G)

U

G U C

G C C

G A C

G G C

C

G U A

G C A

G A A

(Glu/E)

G G A

A

G U G

G C G

G A G

G G G

G

Среди триплетов есть 4 специальных последовательности, выполняющих функции «знаков препинания»:

  • *Триплет AUG , также кодирующий метионин, называется старт-кодоном . С этого кодона начинается синтез молекулы белка. Таким образом, во время синтеза белка, первой аминокислотой в последовательности всегда будет метионин.
  • **Триплеты UAA , UAG и UGA называются стоп-кодонами и не кодируют ни одной аминокислоты. На этих последовательностях синтез белка прекращается.

Свойства генетического кода

1. Триплетность . Каждая аминокислота кодируется последовательностью из трех нуклеотидов - триплетом или кодоном.

2. Непрерывность . Между триплетами нет никаких дополнительных нуклеотидов, информация считывается непрерывно.

3. Неперекрываемость . Один нуклеотид не может входить одновременно в два триплета.

4. Однозначность . Один кодон может кодировать только одну аминокислоту.

5. Вырожденность . Одна аминокислота может кодироваться несколькими разными кодонами.

6. Универсальность . Генетический код одинаков для всех живых организмов.

Пример. Нам дана последовательность кодирующей цепи:

3’- CCGATTGCACGTCGATCGTATA - 5’.

Матричная цепь будет иметь последовательность:

5’- GGCTAACGTGCAGCTAGCATAT - 3’.

Теперь «синтезируем» с этой цепи информационную РНК:

3’- CCGAUUGCACGUCGAUCGUAUA - 5’.

Синтез белка идет в направлении 5’ → 3’, следовательно, нам нужно перевернуть последовательность, чтобы «прочитать» генетический код:

5’- AUAUGCUAGCUGCACGUUAGCC - 3’.

Теперь найдем старт-кодон AUG:

5’- AUAUG CUAGCUGCACGUUAGCC - 3’.

Разделим последовательность на триплеты:

звучит следующим образом: информация с ДНК передается на РНК (транскрипция), с РНК - на белок (трансляция). ДНК также может удваиваться путем репликации, и также возможен процесс обратной транскрипции, когда по матрице РНК синтезируется ДНК, но такой процесс в основном характерен для вирусов.


Рис. 13. Центральная догма молекулярной биологии

ГЕНОМ: ГЕНЫ и ХРОМОСОМЫ

(общие понятия)

Геном - совокупность всех генов организма; его полный хромосомный набор.

Термин "геном" был предложен Г. Винклером в 1920 г. для описания совокупности генов, заключенных в гаплоидном наборе хромосом организмов одного биологического вида. Первоначальный смысл этого термина указывал на то, что понятие генома в отличие от генотипа является генетической характеристикой вида в целом, а не отдельной особи. С развитием молекулярной генетики значение данного термина изменилось. Известно, что ДНК, которая является носителем генетической информации у большинства организмов и, следовательно, составляет основу генома, включает в себя не только гены в современном смысле этого слова. Большая часть ДНК эукариотических клеток представлена некодирующими ("избыточными") последовательностями нуклеотидов, которые не заключают в себе информации о белках и нуклеиновых кислотах. Таким образом, основную часть генома любого организма составляет вся ДНК его гаплоидного набора хромосом.

Гены — это участки молекул ДНК, кодирующие полипептиды и молекулы РНК

За последнее столетие наше представление о генах существенно изменилось. Ранее геном называли участок хромосомы, кодирующий или определяющий один признак или фенотипическое (видимое) свойство, например цвет глаз.

В 1940 г. Джордж Бидл и Эдвард Тейтем предложили молекулярное определение гена. Ученые обрабатывали споры гриба Neurospora crassa рентгеновским излучением и другими агентами, вызывающими изменения в последовательности ДНК (мутации ), и обнаружили мутантные штаммы гриба, утратившие некоторые специфические ферменты, что в некоторых случаях приводило к нарушению целого метаболического пути. Бидл и Тейтем пришли к выводу, что ген — это участок генетического материала, который определяет или кодирует один фермент. Так появилась гипотеза «один ген — один фермент» . Позднее эта концепция была расширена до определения «один ген — один полипептид» , поскольку многие гены кодируют белки, не являющиеся ферментами, а полипептид может оказаться субъединицей сложного белкового комплекса.

На рис. 14 показана схема того, как триплеты нуклеотидов в ДНК определяют полипептид - аминокислотную последовательность белка при посредничестве мРНК. Одна из цепей ДНК играет роль матрицы для синтеза мРНК, нуклеотидные триплеты (кодоны) которой комплементарны триплетам ДНК. У некоторых бактерий и многих эукариот кодирующие последовательности прерываются некодирующими участками(так называемыми интронами ).

Современное биохимическое определение гена еще более конкретно. Генами называются все участки ДНК, кодирующие первичную последовательность конечных продуктов, к которым относятся полипептиды или РНК, обладающие структурной или каталитической функцией.

Наряду с генами ДНК содержит и другие последовательности, выполняющие исключительно регуляторную функцию. Регуляторные последовательности могут обозначать начало или конец генов, влиять на транскрипцию или указывать место инициации репликации или рекомбинации. Некоторые гены могут экспрессироваться разными путями, при этом один и тот же участок ДНК служит матрицей для образования разных продуктов.

Мы можем приблизительно рассчитать минимальный размер гена , кодирующего средний белок. Каждая аминокислота в полипептидной цепи кодируется последовательностью из трех нуклеотидов; последовательности этих триплетов (кодонов) соответствуют цепочке аминокислот в полипептиде, который кодируется данным геном. Полипептидная цепь из 350 аминокислотных остатков (цепь средней длины) соответствует последовательности из 1050 п.н. (пар нуклеотидов ). Однако многие гены эукариот и некоторые гены прокариот прерываются сегментами ДНК, не несущими информации о белке, и поэтому оказываются значительно длиннее, чем показывает простой расчет.

Сколько генов в одной хромосоме?


Рис. 15. Вид хромосом в прокаритической (слева) и эукариотической клеках. Гистоны (Histones) — обширный класс ядерных белков, выполняющих две основные функции: они участвуют в упаковке нитей ДНК в ядре и в эпигенетической регуляции таких ядерных процессов, как транскрипция, репликация и репарация.

Как известно, бактериальные клетки имеют хромосому в виде нити ДНК, уложенной в компактную структуру - нуклеоид. Хромосома прокариота Escherichia coli , чей геном полностью расшифрован, представляет собой кольцевую молекулу ДНК (на самом деле, это не правильный круг, а скорее петля без начала и конца), состоящую из 4 639 675 п.н. В этой последовательности содержится примерно 4300 генов белков и еще 157 генов стабильных молекул РНК. В геноме человека примерно 3,1 млрд пар нуклеотидов, соответствующих почти 29 000 генам, расположенным на 24 разных хромосомах.

Прокариоты (Бактерии).

Бактерия E. coli имеет одну двухцепочечную кольцевую молекулу ДНК. Она состоит из 4 639 675 п.н. и достигает в длину примерно 1,7 мм, что превышает длину самой клетки E. coli приблизительно в 850 раз. Помимо крупной кольцевой хромосомы в составе нуклеоида многие бактерии содержат одну или несколько маленьких кольцевых молекул ДНК, свободно располагающихся в цитозоле. Такие внехромосомные элементы называют плазмидами (рис. 16).

Большинство плазмид состоит всего из нескольких тысяч пар нуклеотидов, некоторые содержат более 10000 п. н. Они несут генетическую информацию и реплицируются с образованием дочерних плазмид, которые попадают в дочерние клетки в процессе деления родительской клетки. Плазмиды обнаружены не только в бактериях, но также в дрожжах и других грибах. Во многих случаях плазмиды не дают никаких преимуществ клеткам-хозяевам, и их единственная задача — независимое воспроизведение. Однако некоторые плазмиды несут полезные для хозяина гены. Например, содержащиеся в плазмидах гены могут придавать клеткам бактерий устойчивость к антибактериальным агентам. Плазмиды, несущие ген β-лактамазы, обеспечивают устойчивость к β-лактамным антибиотикам, таким как пенициллин и амоксициллин. Плазмиды могут переходить от клеток, устойчивых к антибиотикам, к другим клеткам того же или другого вида бактерий, в результате чего эти клетки также становятся резистентными. Интенсивное применение антибиотиков является мощным селективным фактором, способствующим распространению плазмид, кодирующих устойчивость к антибиотикам (а также транспозонов, которые кодируют аналогичные гены) среди болезнетворных бактерий, и приводит к появлению бактериальных штаммов с устойчивостью к нескольким антибиотикам. Врачи начинают понимать опасность широкого использования антибиотиков и назначают их только в случае острой необходимости. По аналогичным причинам ограничивается широкое использование антибиотиков для лечения сельскохозяйственных животных.

См. также: Равин Н.В., Шестаков С.В. Геном прокариот // Вавиловский журнал генетики и селекции, 2013. Т. 17. № 4/2. С. 972-984.

Эукариоты.

Таблица 2. ДНК, гены и хромосомы некоторых организмов

Общая ДНК,

п.н.

Число хромосом*

Примерное число генов

Escherichia coli (бактерия)

4 639 675

4 435

Saccharomyces cerevisiae (дрожжи)

12 080 000

16**

5 860

Caenorhabditis elegans (нематода)

90 269 800

12***

23 000

Arabidopsis thaliana (растение)

119 186 200

33 000

Drosophila melanogaster (плодовая мушка)

120 367 260

20 000

Oryza sativa (рис)

480 000 000

57 000

Mus musculus (мышь)

2 634 266 500

27 000

Homo sapiens (человек)

3 070 128 600

29 000

Примечание. Информация постоянно обновляется; для получения более свежей информации обратитесь к сайтам, посвященным отдельным геномным проектам

* Для всех эукариот, кроме дрожжей, приводится диплоидный набор хромосом. Диплоидный набор хромосом (от греч. diploos- двойной и eidos- вид) - двойной набор хромосом (2n), каждая из которых имеет себе гомологичную.
**Гаплоидный набор. Дикие штаммы дрожжей обычно имеют восемь (октаплоидный) или больше наборов таких хромосом.
***Для самок с двумя Х хромосомами. У самцов есть Х хромосома, но нет Y, т. е. всего 11 хромосом.

В клетке дрожжей, одних из самых маленьких эукариот, в 2,6 раза больше ДНК, чем в клетке E. coli (табл. 2). Клетки плодовой мушки Drosophila , классического объекта генетических исследований, содержат в 35 раз больше ДНК, а клетки человека — примерно в 700 раз больше ДНК, чем клетки E. coli. Многие растения и амфибии содержат еще больше ДНК. Генетический материал клеток эукариот организован в виде хромосом. Диплоидный набор хромосом (2n ) зависит от вида организма (табл. 2).

Например, в соматической клетке человека 46 хромосом (рис. 17 ). Каждая хромосома эукариотической клетки, как показано на рис. 17, а , содержит одну очень крупную двухспиральную молекулу ДНК. Двадцать четыре хромосомы человека (22 парные хромосомы и две половые хромосомы X и Y) различаются по длине более чем в 25 раз. Каждая хромосома эукариот содержит определенный набор генов.


Рис. 17. Хромосомы эукариот. а — пара связанных и конденсированных сестринских хроматид из хромосомы человека. В такой форме эукариотические хромосомы пребывают после репликации и в метафазе в процессе митоза. б — полный набор хромосом из лейкоцита одного из авторов книги. В каждой нормальной соматической клетке человека содержится 46 хромосом.

Если соединить между собой молекулы ДНК человеческого генома (22 хромосомы и хромосомы X и Y или Х и Х), получится последовательность длиной около одного метра. Прим.: У всех млекопитающих и других организмов с гетерогаметным мужским полом, у самок две X-хромосомы (XX), а у самцов — одна X-хромосома и одна Y-хромосома (XY).

Большинство клеток человека , поэтому общая длина ДНК таких клеток около 2м. У взрослого человека примерно 10 14 клеток, таким образом, общая длина всех молекул ДНК составляет 2・10 11 км. Для сравнения, окружность Земли — 4・10 4 км, а расстояние от Земли до Солнца — 1,5・10 8 км. Вот как удивительно компактно упакована ДНК в наших клетках!

В клетках эукариот есть и другие органеллы, содержащие ДНК, — это митохондрии и хлоропласты. Выдвигалось множество гипотез относительно происхождения ДНК митохондрий и хлоропластов. Общепризнанная сегодня точка зрения заключается в том, что они представляют собой рудименты хромосом древних бактерий, которые проникли в цитоплазму хозяйских клеток и стали предшественниками этих органелл. Митохондриальная ДНК кодирует митохондриальные тРНК и рРНК, а также несколько митохондриальных белков. Более 95% митохондриальных белков кодируется ядерной ДНК.

СТРОЕНИЕ ГЕНОВ

Рассмотрим строение гена у прокариот и эукариот, их сходства и различия. Несмотря на то, что ген — это участок ДНК, кодирующий всего один белок или РНК, кроме непосредственно кодирующей части, он также включает в себя регуляторные и иные структурные элементы, имеющие разное строение у прокариот и эукариот.

Кодирующая последовательность - основная структурно-функциональная единица гена, именно в ней находятся триплеты нуклеотидов, кодирующие аминокислотную последовательность. Она начинается со старт-кодона и заканчивается стоп-кодоном.

До и после кодирующей последовательности находятся нетранслируемые 5’- и 3’-последовательности . Они выполняют регуляторные и вспомогательные функции, например, обеспечивают посадку рибосомы на и-РНК.

Нетранслируемые и кодирующая последовательности составлют единицу транскрипции - транскрибируемый участок ДНК, то есть участок ДНК, с которого происходит синтез и-РНК.

Терминатор - нетранскрибируемый участок ДНК в конце гена, на котором останавливается синтез РНК.

В начале гена находится регуляторная область , включающая в себя промотор и оператор .

Промотор - последовательность, с которой связывается полимераза в процессе инициации транскрипции. Оператор - это область, с которой могут связываться специальные белки - репрессоры , которые могут уменьшать активность синтеза РНК с этого гена - иначе говоря, уменьшать его экспрессию .

Строение генов у прокариот

Общий план строения генов у прокариот и эукариот не отличается - и те, и другие содержат регуляторную область с промотором и оператором, единицу транскрипции с кодирующей и нетранслируемыми последовательностями и терминатор. Однако организация генов у прокариот и эукариот отличается.

Рис. 18. Схема строения гена у прокариот (бактерий) - изображение увеличивается

В начале и в конце оперона есть единые регуляторные области для нескольких структурных генов. С транскрибируемого участка оперона считывается одна молекула и-РНК, которая содержит несколько кодирующих последовательностей, в каждой из которых есть свой старт- и стоп-кодон. С каждого из таких участков с интезируется один белок. Таким образом, с одной молекулы и-РНК синтезируется несколько молекул белка.

Для прокариот характерно объединение нескольких генов в единую функциональную единицу - оперон . Работу оперона могут регулировать другие гены, которые могут быть заметно удалены от самого оперона - регуляторы . Белок, транслируемый с этого гена называется репрессор . Он связывается с оператором оперона, регулируя экспрессию сразу всех генов, в нем содержащихся.

Для прокариот также характерно явление сопряжения транскрипции и трансляции .


Рис. 19 Явление сопряжения транскрипции и трансляции у прокариот - изображение увеличивается

МОСКВА, 25 апр — РИА Новости, Татьяна Пичугина. Ровно 65 лет назад британские ученые Джеймс Уотсон и Фрэнсис Крик опубликовали статью о расшифровке структуры ДНК, заложив основы новой науки — молекулярной биологии. Это открытие изменило очень многое в жизни человечества. РИА Новости рассказывает о свойствах молекулы ДНК и о том, почему она так важна.

Во второй половине XIX века биология была совсем молодой наукой. Ученые только приступали к исследованию клетки, а представления о наследственности, хотя и были уже сформулированы Грегором Менделем, не получили широкого признания.

Весной 1868 года молодой швейцарский врач Фридрих Мишер приехал в Университет города Тюбингена (Германия), чтобы заняться научной работой. Он намеревался узнать, из каких веществ состоит клетка. Для экспериментов выбрал лейкоциты, которые легко получить из гноя.

Отделяя ядро от протоплазмы, белков и жиров, Мишер обнаружил соединение с большим содержанием фосфора. Он назвал эту молекулу нуклеином ("нуклеус" на латыни — ядро).

Это соединение проявляло кислотные свойства, поэтому возник термин "нуклеиновая кислота". Его приставка "дезоксирибо" означает, что молекула содержит H-группы и сахара. Потом выяснилось, что на самом деле это соль, но название менять не стали.

В начале XX века ученые уже знали, что нуклеин представляет собой полимер (то есть очень длинную гибкую молекулу из повторяющихся звеньев), звенья сложены четырьмя азотистыми основаниями (аденином, тимином, гуанином и цитозином), а нуклеин содержится в хромосомах — компактных структурах, которые возникают в делящихся клетках. Их способность передавать наследственные признаки продемонстрировал американский генетик Томас Морган в опытах на дрозофилах.

Модель, объяснившая гены

А вот что делает в ядре клетки дезоксирибонуклеиновая кислота, сокращенно ДНК, долго не понимали. Считалось, что она играет какую-то структурную роль в хромосомах. Единицам наследственности — генам — приписывали белковую природу. Прорыв совершил американский исследователь Освальд Эвери, опытным путем доказавший, что генетический материал передается от бактерии к бактерии посредством ДНК.

Стало ясно, что ДНК нужно изучать. Но как? В то время ученым был доступен только рентген. Чтобы просвечивать им биологические молекулы, их приходилось кристаллизовать, а это сложно. Расшифровкой структуры белковых молекул по рентгенограммам занимались в Кавендишской лаборатории (Кембридж, Великобритания). Работавшие там молодые исследователи Джеймс Уотсон и Френсис Крик не располагали собственными экспериментальными данными по ДНК, поэтому они воспользовались рентгенограммами коллег из Королевского колледжа Мориса Уилкинса и Розалинды Франклин.

Уотсон и Крик предложили модель структуры ДНК, точно соответствующую рентгенограммам: две параллельные цепочки закручены в правую спираль. Каждая цепочка складывается произвольным набором азотистых оснований, нанизанных на остов их сахаров и фосфатов, и удерживается водородными связями, протянутыми между основаниями. Причем аденин соединяется только с тимином, а гуанин — с цитозином. Это правило называют принципом комплементарности.

Модель Уотсона и Крика объясняла четыре главных функции ДНК: репликацию генетического материала, его специфику, хранение информации в молекуле и ее способность мутировать.

Ученые опубликовали свое открытие в журнале Nature 25 апреля 1953 года. Через десять лет им вместе с Морисом Уилкинсом присудили Нобелевскую премию по биологии (Розалинда Франклин скончалась в 1958 году от рака в возрасте 37 лет).

"Теперь, более полувека спустя, можно констатировать, что открытие структуры ДНК сыграло в развитии биологии такую же роль, как в физике — открытие атомного ядра. Выяснение строения атома привело к рождению новой, квантовой физики, а открытие строения ДНК привело к рождению новой, молекулярной биологии", — пишет Максим Франк-Каменецкий, выдающийся генетик, исследователь ДНК, автор книги "Самая главная молекула".

Генетический код

Теперь оставалось узнать, как эта молекула действует. Было известно, что ДНК содержит инструкции для синтеза клеточных белков, которые выполняют всю работу в клетке. Белки — это полимеры, состоящие из повторяющихся наборов (последовательностей) аминокислот. Причем аминокислот — всего двадцать. Виды животных отличаются друг от друга набором белков в клетках, то есть разными последовательностями аминокислот. Генетика утверждала, что эти последовательности задаются генами, которые, как тогда считали, служат первокирпичиками жизни. Но что такое гены, никто в точности не представлял.

Ясность внес автор теории Большого взрыва физик Георгий Гамов, сотрудник Университета Джорджа Вашингтона (США). Основываясь на модели двухцепочечной спирали ДНК Уотсона и Крика, он предположил, что ген — это участок ДНК, то есть некая последовательность звеньев — нуклеотидов. Поскольку каждый нуклеотид — это одно из четырех азотистых оснований, то нужно просто выяснить, как четыре элемента кодируют двадцать. В этом состояла идея генетического кода.

К началу 1960-х установили, что белки синтезируются из аминокислот в рибосомах — своего рода "фабриках" внутри клетки. Чтобы приступить к синтезу белка, к ДНК приближается фермент, распознает определенный участок в начале гена, синтезирует копию гена в виде маленькой РНК (ее называют матричной), затем уже в рибосоме из аминокислот выращивается белок.

Выяснили также, что генетический код — трехбуквенный. Это значит, что одной аминокислоте соответствуют три нуклеотида. Единицу кода назвали кодоном. В рибосоме информация с мРНК считывается кодон за кодоном, последовательно. И каждому из них соответствует несколько аминокислот. Как же выглядит шифр?

На этот вопрос ответили Маршалл Ниренберг и Генрих Маттеи из США. В 1961 году они впервые доложили свои результаты на биохимическом конгрессе в Москве. К 1967-му генетический код полностью расшифровали. Он оказался универсальным для всех клеток всех организмов, что имело далеко идущие последствия для науки.

Открытие структуры ДНК и генетического кода полностью переориентировало биологические исследования. То, что у каждого индивида уникальная последовательность ДНК, кардинально изменило криминалистику. Расшифровка генома человека дала антропологам совершенно новый метод изучения эволюции нашего вида. Недавно изобретенный редактор ДНК CRISPR-Cas позволил сильно продвинуть вперед генную инженерию. По всей видимости, в этой молекуле хранится решение и самых злободневных проблем человечества: рака, генетических заболеваний, старения.

Мономерными звеньями которого являются нуклиатиды.

Что такое ДНК?

Вся информация о строении и функционировании любого живого организма содержится в закодированном виде в его генетическом материале. Основу генетического материала организма составляет дезоксирибонуклеиновая кислота (ДНК) .

ДНК большинства организмов – это длинная двухцепочечная полимерная молекула. Последовательность мономерных звеньев (дезоксирибонуклеотидов ) в одной ее цепи соответствует (комплементарна ) последовательности дезоксирибонуклеотидов в другой. Принцип комплементарности обеспечивает синтез новых молекул ДНК, идентичных исходным, при их удвоении (репликации ).

Участок молекулы ДНК, кодирующий определенный признак, – ген .

Гены – это индивидуальные генетические элементы, имеющие строго специфичную нуклеотидную последовательность, и кодирующие определенные признаки организма. Одни из них кодируют белки, другие - только молекулы РНК.

Информация, которая содержится в генах, кодирующих белки (структурных генах), расшифровывается в ходе двух последовательных процессов:

  • синтеза РНК (транскрипции ): на определенном участке ДНК как на матрице синтезируется матричная РНК (мРНК).
  • синтеза белка (трансляции): В ходе согласованной работы многокомпонентной системы при участии транспортных РНК (тРНК ), мРНК , ферментов и различных белковых факторов осуществляется синтез белковой молекулы .

Все эти процессы обеспечивают правильный перевод зашифрованной в ДНК генетической информации с языка нуклеотидов на язык аминокислот. Аминокислотная последовательность белковой молекулы определяет ее структуру и функции.

Строение ДНК

ДНК – это линейный органический полимер . Его – нуклеотиды , которые, в свою очередь, состоят из:

При этом, фосфатная группа присоединена к 5′-атому углерода моносахаридного остатка, а органическое основание - к 1′-атому .

Основания в ДНК бывают двух типов:


Строение нуклеотидов в молекуле ДНК

В ДНК моносахарид представлен 2′-дезоксирибозой , содержащей только 1 гидроксильную группу (ОН) , а в РНК - рибозой , имеющей 2 гидроксильные группы (OH ).

Нуклеотиды соединены друг с другом фосфодиэфирными связями , при этом фосфатная группа 5′-углеродного атома одного нуклеотида связана с З’-ОН-группой дезоксирибозы соседнего нуклеотида (рисунок 1). На одном конце полинуклеотидной цепи находится З’-ОН-группа (З’-конец), а на другом - 5′-фосфатная группа (5′-конец).

Уровни структуры ДНК

Принято выделять 3 уровня структуры ДНК:

  • первичную;
  • вторичную;
  • третичную.

Первичная структура ДНК – это последовательность расположения нуклеотидов в полинуклеотидной цепи ДНК.

Вторичная структура ДНК стабилизируется между комплементарными парами оснований и представляет собой двойную спираль из двух антипараллелных цепочек, закрученных вправо вокруг одной оси.

Общий виток спирали- 3,4нм , расстояние между цепочками 2нм.

Третичная структура ДНК – суперсперализация ДНК. Двойная спираль ДНК на некоторых участках может подвергаться дальнейшей спирализации с образованием суперспирали или открытой кольцевой формы, что часто вызвано ковалентным соединением их открытых концов. Суперспиральная структура ДНК обеспечивает экономную упаковку очень длинной молекулы ДНК в хромосоме. Так, в вытянутой форме длина молекулы ДНК составляет 8 см , а в форме суперспирали укладывается в 5 нм .

Правило Чаргаффа

Правило Э. Чаргаффа – это закономерность количественного содержания азотистых оснований в молекуле ДНК:

  1. У ДНК молярные доли пуриновых и пиримидиновых оснований равны: А+ G = C + Т или (А + G )/(C + Т)=1 .
  2. В ДНК количество оснований с аминогруппами (А + C ) равно количеству оснований с кетогруппами (G + Т): А + C = G + Т или (А + C )/(G + Т)= 1
  3. Правило эквивалентности, то есть: А=Т, Г=Ц; А/Т = 1; Г/Ц=1.
  4. Нуклеотидный состав ДНК у организмов различных групп специфичен и характеризуется коэффициентом специфичности: (Г+Ц)/(А+Т). У высших растений и животных коэффициент специфичности меньше 1, и колеблется незначительно: от 0,54 до 0,98 , у микроорганизмов он больше 1.

Модель ДНК Уотсона-Крика

Б 1953 г. Джеймс Уотсон и Фрэнсис Крик , основываясь на данных рентгеноструктурного анализа кристаллов ДНК, пришли к выводу, что нативная ДНК состоит из двух полимерных цепей, образующих двойную спираль (рисунок 3).

Навитые одна на другую полинуклеотидные цепи удерживаются вместе водородными связями , образующимися между комплементарными основаниями противоположных цепей (рисунок 3). При этом аденин образует пару только с тимином , а гуанин - с цитозином . Пара оснований А-Т стабилизируется двумя водородными связями , а пара G-С - тремя .

Длина двухцепочечной ДНК обычно измеряется числом пар комплементарных нуклеотидов (п .н .). Для молекул ДНК, состоящих из тысяч или миллионов пар нуклеотидов, приняты единицы т.п.н. и м.п.н. соответственно. Например, ДНК хромосомы 1 человека представляет собой одну двойную спираль длиной 263 м.п.н .

Сахарофосфатный остов молекулы , который состоит из фосфатных групп и дезоксирибозных остатков, соединенных 5’-З’-фосфодиэфирными связями , образует «боковины винтовой лестницы», а пары оснований А-Т и G-С - ее ступеньки (рисунок 3).

Рисунок 3: Модель ДНК Уотсона-Крика

Цепи молекулы ДНК антипараллельны : одна из них имеет направление 3’→5′ , другая 5’→3′ . В соответствии с принципом комплементарности , если в одной из цепей имеется нуклеотидная последовательность 5-TAGGCAT-3′ , то в комплементарной цепи в этом месте должна находиться последовательность 3′-ATCCGTA-5′ . В этом случае двухцепочечная форма будет выглядеть следующим образом:

  • 5′-TAGGCAT-3′
  • 3-ATCCGTA-5′.

В такой записи 5′-конец верхней цепи всегда располагают слева, а 3′-конец - справа.

Носитель генетической информации должен удовлетворять двум основным требованиям: воспроизводиться (реплицироваться) с высокой точностью и детерминировать (кодировать) синтез белковых молекул .

Модель ДНК Уотсона-Крика полностью отвечает этим требованиям, так как:

  • согласно принципу комплементарности каждая цепь ДНК может служить матрицей для образования новой комплементарной цепи. Следовательно, после одного раунда образуются две дочерние молекулы, каждая из которых имеет такую же нуклеотидную последовательность, как исходная молекула ДНК.
  • нуклеотидная последовательность структурного гена однозначно задает аминокислотную последовательность кодируемого ею белка.
  1. Одна молекула ДНК человека вмещает порядка 1,5 гигабайта информации . При этом, ДНК всех клеток человеческого организма занимают 60 млрд. терабайт, что сохраняются на 150-160 граммах ДНК.
  2. Международный день ДНК отмечается 25 апреля. Именно в этот день в 1953 году Джеймс Уотсон и Фрэнсис Крик опубликовали в журнале Nature свою статью под названием «Молекулярная структура нуклеиновых кислот» , где описали двойную спираль молекулы ДНК.

Список литературы: Молекулярная биотехнология: принципы и применение, Б.Глик, Дж. Пастернак, 2002 год






































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели и задачи урока:

  • Образовательные :
    • сформировать знания о строении, свойствах, структуре молекул нуклеиновых кислот, как биополимеров, о принципе комплементарности в ДНК;
    • раскрыть роль нуклеиновых кислот в живой природе.
  • Развивающие :
    • развивать общеучебные умения (понимать и запоминать прочитанное, делать краткие записи, представление основных мыслей в виде схем, заполнение таблиц и др.);
    • развивать интеллектуальные умения (научить логически мыслить (поиск ответов на вопросы творческого характера), задавать вопросы и составлять суждения, сравнивать, находить взаимосвязи (состава, структуры и функций молекул ДНК и РНК);
    • развивать коммуникационные умения (умение понятно, кратко, точно, вежливо излагать свои мысли, задавать вопросы и отвечать на них, слушать и сосредотачивать внимание).
  • Воспитательные :
    • воспитывать у учащихся культуру общения и труда в ходе беседы, просмотра презентации и анимационного фильма, выполнения заданий;
    • воспитывать критическую и объективную самооценку знаний.

План урока:

I. Организационный момент (1-2 мин.)

II. Изучение новой темы (18-25 мин.)

  1. Мотивация к уроку (1-2 мин.)
  2. Нуклеиновые кислоты, состав, строение молекул. (Объяснение учителя в ходе показа слайдов, после показа фильмов)
  3. Принцип комплементарности в ДНК, самоудвоение ДНК. (Объяснение учителя в ходе показа слайдов)
  4. Сравнение ДНК и РНК. (Самостоятельная работа учащихся по учебнику).

III. Повторение и закрепление материала (10 мин.)

IV . Домашнее задание и подведение итогов (2-5 мин.)

Материалы и оборудование:

  • мультимедийный комплекс (компьютер, проектор, экран);
  • слайдовая презентация “Нуклеиновые кислоты”,
  • фрагменты видеофильма “Строение ядра”, о молекулах нуклеиновых кислот;
  • пространственная модель ДНК;
  • таблицы в электронном формате по теме;
  • анимационный фильм “Репликация ДНК”;
  • 3D –модель ДНК (электронное пособие “Биология. 6-9 класс “Кирилл и Мефодий”);

Этапы урока

Действия учителя

Действия учеников

I. Организационный момент (1-2 мин.). Организация начала урока, раздача тетрадей для проверочных работ, включение слайдовой презентации. Приветствие учителя, подготовка рабочих мест к уроку.
II. Изучение новой темы.

1. Мотивация к изучению темы (1-2 мин.)

Ознакомление с новой темой. Нацеливает учащихся на самостоятельное формулирование целей и задач урока.
Вопросы для мотивации к изучению темы: Если мы разрежем яблоко, извлечем семена и посадим их, из этих семян никогда не вырастет рябина. Почему?
При затруднении учеников через ряд вопросов подводит к понятию наследственности. А вот как сегодняшняя тема связана с наследственностью мы узнаем, изучив тему и в конце урока попытаемся ответить на заданный вопрос.
Записывают в тетради тему урока. Слушают учителя, участвуют в определении целей и задач урока, отвечают на вопросы.
2. Нуклеиновые кислоты, состав, структура и функции молекул. (5 мин.) Фрагмент о молекулах ДНК и РНК из видеофильма “Строение ядра”, модель ДНК. Показывает и объясняет состав и структуру молекул ДНК и РНК, мотивируя учеников к тому, что внимание и запоминание рассказа учителя поможет им при выполнении самостоятельного задания. После показа фильмов задает вопросы по содержанию фильма. По ходу объяснения делают записи в тетрадях.
После просмотра фильма отвечают на вопросы учителя.
3. Принцип комплементарности в ДНК, самоудвоение ДНК (5 мин.) Обращает внимание на рисунок ДНК и просит найти закономерность в расположении азотистых оснований. Объясняет понятие комплементарности и закрепляет знания на примере решения задачи.
Просмотр анимационного фильма “Репликация ДНК”.
Вопросы по фильму: Благодаря чему ДНК может самоудваиваться? Какое значение имеет репликация ДНК?
Внимательно слушают и записывают термины и участвуют в решении задачи.
В ходе повторного просмотра фильма при выключенном звуке комментируют процесс и отвечают на вопросы учителя.
4. Сравнение ДНК и РНК. (10 мин.) Объясняет правила заполнения таблицы. По ходу выполнения оказывает индивидуальную помощь и проверяет тесты по ключу.
Для снятия усталости во время выполнения задания включается легкая музыка.
Ззаполняют таблицу
Сравнительная характеристика ДНК и РНК”. Работают индивидуально
III. Повторение и закрепление материала. (10 минут) Объяснение правил выполнения, ознакомление с критериями оценки. Сбор выполненных работ по истечении времени.
Ознакомление с правильными ответами и их пояснение.
Выполнение тестов, копирование ответов в рабочей тетради.
Самопроверка ответов по ключу
IV. Домашнее задание и подведение итогов (1-2 мин.) Объявляет домашнее задание и оценки за проверочный тест и за участие на уроке. Подводит итоги урока. Записывают домашнее задание, подают дневники для выставления отметок.

ХОД УРОКА

Объявление темы и цели урока. Мотивация учебной деятельности

– Из всего, что нас окружает, самой необъяснимой кажется жизнь. (Слайд 2) Мы привыкли, что она всегда вокруг нас и в нас самих, и потеряли способность удивляться. Но пойдите в лес, взгляните так, будто вы их увидели впервые, на деревья, траву, цветы, на птиц и муравьев, и вас охватит чувство беспомощности перед лицом великой тайны жизни. Неужели во всем этом есть нечто общее, нечто такое, что объединяет все живые существа, будь то человек или невидимый глазом микроб? Что определяет преемственность жизни, ее возрождение вновь и вновь из поколения в поколение? Эти вопросы стары как мир, но только во второй половине ХХ века посчастливилось впервые узнать ответы. В сущности, ответы оказались не слишком сложными и, главное, ослепительно красивыми. О том, как их удалось получить и в чем они состоят, мы узнаем сегодня на уроке. Центральное место в новой науке молекулярной биологии, которая призвана дать ответ на вечный вопрос: “Что такое жизнь?”, занимают молекулы ДНК и РНК. Нуклеиновые кислоты – это тот инструмент, с помощью которого можно проникнуть в тайны природы.

– Сегодня на уроке мы познакомимся с видами нуклеиновых кислот, их структурой и биологической ролью, узнаем об истории открытия и изучения этих важных органических веществ и проведем подготовку к ЕГЭ, так как материал данного урока включен в задания экзаменационной работы по биологии.

План изучения нуклеиновых кислот (Слайд 4)
Строение. (Слайд 12)
История открытия и изучения. (Слайды 5-10)
Виды. (Слайд 11)

Нуклеиновые кислоты – это высокомолекулярные органические соединения. Они состоят из углерода, водорода, кислорода, фосфора, азота.
Нуклеиновые кислоты были открыты в 1869 г. швейцарским врачом Ф.Мишером в ядрах лейкоцитов, входящих в состав гноя. Впоследствии нуклеиновые кислоты были обнаружены во всех растительных и животных клетках, бактериях, протистах, грибах и вирусах.
Они играют центральную роль в хранении и передаче наследственной информации о свойствах организма.

В природе существует два вида нуклеиновых кислот: дезоксирибонуклеиновые, или ДНК, и рибонуклеиновые, или РНК. Название произошло от углевода, входящего в состав нуклеиновых кислот. Молекула ДНК содержит сахар дезоксирибозу, а молекула РНК – рибозу.
В настоящее время известны хромосомальная и внехромосомальная ДНК и рибосомальная, информационная и транспортная РНК, которые участвуют в синтезе белка. ДНК включает множество генов, определяющих различия в метаболизме. Например, ДНК бактериальной клетки кишечной палочки содержит несколько тысяч различных генов, а у животных и растений – много больше, причем каждый вид организмов имеет характерный только для него набор генов. Однако многие гены – общие для всех организмов, что подтверждает общность происхождения живых существ.

ДНК состоит из двух полинуклеотидных цепей, которые соединяются при водородных связей между азотистыми основаниями по принципу комплементарности – это принцип строгова соответствия. Цепи соединены антипаралельно,. Цепи ДНК в силу своей неравномерности распределения водородных связей, цепи закручиваются в спираль. Один виток содержит около 10 нуклеотидов. ДНК главным образом содержится в ядре клетки, но она так же входит в состав пластид и митохондрий. В ее структуре содержится вся генетическая информация. ДНК участвует в ее хранении и реализации. Колличкство ДНК в самотических клетках постоянна в пределах одного вида. ДНК обладает важным свойством репликацией. Репликация ДНК происходит в S период клеточного цикла в интерфазе, при подготовке клетки к делению. Под действием фермента ДНК-полимиразы, молекула ДНК раскручивается и водородные связи разрывыаются. Затем цпи расходятся и служат матрицами для синтеза длчерних цепей. При этом направление синтеза определяется С3 положением. Поэтому на одной зи цепей синтез происходит непрерывно – лидирующая цепь, а на другой цепи синтез происходит в виде фрагментов, которые потом сшиваются – отстающая цепь. Полинуклеотидная цепь ДНК состоит из нуклеотидов. А что является структурными компонентами нуклеотидов?

В состав любого нуклеотида ДНК входит одно из четырех азотистых оснований: аденин (А), гуанин (Г), тимин (Т) и цитозин (Ц), а также сахар дезоксирибоза (C3H10O4) и остаток фосфорной кислоты.

Различаются ли нуклеотиды между собой?
Они отличаются только азотистыми основаниями, которые попарно имеют близкое химическое строение: Ц подобен Т (они относятся к пиримидиновым основаниям), А подобен Г (они относятся к пуриновым основаниям). А и Г по размерам несколько больше, чем Т и Ц. В ДНК входят нуклеотиды только четырех видов.
Как объединяются две полинуклеотидные цепи в единую молекулу ДНК?
Между азотистыми основаниями нуклеотидов разных цепей образуются водородные связи (между А и Т – две, а между Г и Ц – три). При этом А соединяется водородными связями только с Т, а Г – с Ц. В результате у всякого организма число адениловых нуклеотидов равно числу тимидиловых, а число гуаниловых – числу цитидиловых. Эта закономерность получила название правила Чаргаффа. Благодаря этому свойству последовательность нуклеотидов в одной цепочке определяет их последовательность в другой, т.е. цепи ДНК являются как бы зеркальными отражениями друг друга. Такое избирательное соединение нуклеотидов называется комплементарностью, и это свойство лежит в основе самосборки новой полинуклеотидной цепи ДНК на базе исходной. Помимо водородных связей в стабилизации структуры двойной спирали участвуют и гидрофобные взаимодействия.

Задание (Слайд): постройте молекулу и-РНК, если участок молекулы ДНК имеет следующее строение:

А – А – Ц – Г – Г – Ц – Г – Т – А – Ц – Г – Т

У – У – Г – Ц – Ц – Г – Ц – А – У – Г – Ц – А – решение.

Необходимо напомнить, что вместо тимина в РНК содержится урацил (мнемоника: вместо Тигра-Альбиноса в РНК строится Утка-Альбинос)
Дополнительный вопрос: сколько аминокислотных звеньев в молекуле белка кодирует данный участок? Решение: Так как данный участок и-РНК состоит из 12 нуклеотидов, а одну аминокислоту кодирует триплет, т. е. тройка нуклеотидов, то число аминокислотных звеньев равно 12: 3 = 4

РНК - полимер, мономерами которой являются рибонуклеотиды . В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение - некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Мономер РНК - нуклеотид (рибонуклеотид) - состоит из остатков трех веществ:

1) азотистого основания,
2) пятиуглеродного моносахарида (пентозы) и
3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.

Пиримидиновые основания РНК - урацил, цитозин, пуриновые основания - аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.

Выделяют три вида РНК:

1) информационная (матричная) РНК - иРНК (мРНК),
2) транспортная РНК - тРНК,
3) рибосомная РНК - рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синт

Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса - 25 000–30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке.

Функции тРНК:

1) транспорт аминокислот к месту синтеза белка, к рибосомам,
2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3"-концу акцепторного стебля.

Антикодон - три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.

Рибосомные РНК содержат 3000-5000 нуклеотидов; молекулярная масса - 1 000 000-1 500 000. На долю рРНК приходится 80-85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы - органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках.

Функции рРНК:

1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом;
2) обеспечение взаимодействия рибосомы и тРНК;
3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания,
4) формирование активного центра рибосомы.

Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке.

Функции иРНК:

1) перенос генетической информации от ДНК к рибосомам,
2) матрица для синтеза молекулы белка,
3) определение аминокислотной последовательности первичной структуры белковой молекулы

Чем отличаются составы нуклеотидов ДНК и РНК?

РНК построена из тех же азотистых оснований, что и ДНК, но вместо тимина в ее состав входит урацил. Кроме того, углевод нуклеотидов РНК представлен рибозой.
Как происходит соединение нуклеотидов между собой в полинуклеотидной цепи ?
В полинуклеотидной цепи соседние нуклеотиды связаны между собой ковалентными связями, которые образуются между дезоксирибозой (в молекуле ДНК) или рибозой (в молекуле РНК) одного нуклеотида и остатком фосфорной кислоты другого нуклеотида.
Чем объясняется огромное разнообразие генов в составе молекулы ДНК ?
Хотя ДНК содержит всего четыре типа разных нуклеотидов, благодаря различной последовательности их расположения в длинной цепочке достигается огромное разнообразие их сочетаний в молекуле.

Работа по вопросам: (и заполнение таблицы)

  1. Где в клетке находятся нуклеиновые кислоты?
  2. Какое строение имеют молекулы ДНК и РНК?
  3. Чем отличаются составы нуклеотидов ДНК и РНК?
  4. Какие углеводы входят в состав нуклеотидов ДНК и РНК?
  5. Какую роль выполняют эти НК?
  6. Каково их местоположение?

По вопросам составляется сравнительная характеристика.

Признаки

Местонахождение в клетке ядро, митохондрии, пластиды ядро, цитоплазма, рибосомы, митохондрии, пластиды
Роль в клетке химическая основа хромосомного генетического материала (генов);
матрица для синтеза ДНК;
матрица для синтеза РНК;
информация о структуре белка
иРНК передает код наследственной информации о первичной структуре белка;
рРНК входит в состав рибосом;
тРНК переносит аминокислоты к рибосомам;
митохондриальная и пластидная ДНК входят в состав этих органоидов
Строение двойная спираль: две комплементарные полинуклеотидные цепи одинарная полинуклеотидная цепь
Мономеры дезоксирибонуклеотиды рибонуклеотиды

III. Обобщение и корректировка знаний

– Проверка правильности заполнения обобщающей таблицы (Слайд 29)

IV. Итоговое тестирование (Слайды 32-33)

1. Молекулы ДНК представляют собой материальную основу наследственности, так как в них закодирована информация о структуре молекул

а – полисахаридов; б – белков; в – липидов; г – аминокислот.

2. В состав нуклеиновых кислот НЕ входят

а – азотистые основания; б – остатки пентоз; в – остатки фосфорной кислоты; г – аминокислоты.

3. Связь, возникающая между азотистыми основаниями двух комплементарных цепей ДНК,

а – ионная; б – пептидная; в – водородная; г – сложноэфирная.

4. Комплементарными основаниями НЕ является пара

а – тимин – аденин; б – цитозин – гуанин; в – цитозин – аденин; г – урацил – аденин.

5. В одном из генов ДНК 100 нуклеотидов с тимином, что составляет 10% от общего количества. Сколько нуклеотидов с гуанином?

а – 200; б – 400; в – 1000; г – 1800.

6. Молекулы РНК, в отличие от ДНК, содержат азотистое основание

а – урацил; б – аденин; в – гуанин; г – цитозин.

7. Благодаря репликации ДНК

а – формируется приспособленность организма к среде обитания;
б – у особей вида возникают модификации;
в – появляются новые комбинации генов;
г – наследственная информация в полном объеме передается от материнской клетки к дочерним во время митоза.

8. Молекулы и-РНК

а – служат матрицей для синтеза т-РНК;
б – служат матрицей для синтеза белка;
в – доставляют аминокислоты к рибосоме;
г – хранят наследственную информацию клетки.

9. Кодовому триплету ААТ в молекуле ДНК соответствует триплет в молекуле и-РНК

а – УУА; б – ТТА; в – ГГЦ; г – ЦЦА.

10. Белок состоит из 50 аминокислотных звеньев. Число нуклеотидов в гене, в котором зашифрована первичная структура этого белка, равно

а – 50; б – 100; в – 150; г – 250.

11. В рибосоме при биосинтезе белка располагаются два триплета и-РНК, к которым в соответствии с принципом комплементарности присоединяются антикодоны

а – т-РНК; б – р-РНК; в – ДНК; г – белка.

12. Какая последовательность правильно отражает путь реализации генетической информации?

а) ген – ДНК – признак – белок;
б) признак – белок – и-РНК – ген – ДНК;
в) и-РНК – ген – белок – признак;
г) ген – и-РНК – белок – признак.

13. Собственные ДНК и РНК в эукариотической клетке содержат а – рибосомы; б – лизосомы; в – вакуоли; г – митохондрии.

14. В состав хромосом входят

а – РНК и липиды; б – белки и ДНК; в – АТФ и т-РНК; г – АТФ и глюкоза.

15. Ученые, которые предположили и доказали, что молекула ДНК – двойная спираль, это

а – И. Ф. Мишер и О. Эвери;
б – М. Ниренберг и Дж. Матеи;
в – Дж. Д. Уотсон и Ф. Крик;
г – Р. Франклин и М. Уилкинс.

Правильные ответы (Слайд): 1б, 2г, 3в, 4в, 5б, 6а, 7г, 8б, 9а, 10в, 11а, 12г, 13г, 14б, 15в.

Выводы. Использование в оптимальном сочетании различных элементов ЦОР усиливает эффективность урока, позволяет обогатить багаж знаний обучающегося большим количеством готовых, строго отобранных, соответствующим образом организованных знаний, развивать интеллектуальные, творческие способности учащихся, их умение самостоятельно приобретать новые знания, работать с различными источниками информации. Применение различных методических приемов (например, отключить звук и попросить ученика прокомментировать процесс, остановить кадр и предложить продолжить дальнейшее протекание процесса, попросить объяснить процесс, применение приемов “вопрос-ответ”, последовательное выведение объектов на экран и др.)
позволяет интенсифицировать деятельность учителя и школьника; повысить качество обучения предмету; отразить существенные стороны биологических объектов, выдвинуть на передний план наиболее важные (с точки зрения учебных целей и задач) характеристики изучаемых объектов и явлений природы. Домашние задания различного характера (поиск информации в Интернете, подготовка сообщений и презентаций, разработка проектов и др.) повышают познавательный интерес к предмету, развивают интеллектуальные умения, способствуют углублению знаний.

Loading...Loading...