Внутренняя среда организма и ее значение. Вода. Физические свойства Относительное постоянство внутренней среды

Литература основная

1. Физиология человека. Под редакцией В.М.Покровского, Г.Ф.Коротько.- Медицина, 2003 (2007) г.- С. 229-237.

2. Физиология человека В двух томах. Том I. Под редакцией В. М. Покровского, Г. Ф. Коротько.- Медицина, 1997 (1998, 2000, 2001) г. С. 276-284.

Долгое время за кровью признавали могучую и исключительную силу: кровью скрепляли священные клятвы; жрецы заставляли своих деревянных идолов «плакать кровью»; древние гре­ки приносили кровь в жертву своим богам[Мф1] . Некоторые философы Древней Гре­ции считали кровь носителем души. Древнегреческий врач Гиппократ наз­начал душевнобольным кровь здоро­вых людей. Он думал, что в крови здоровых людей - здоровая душа[Мф2] .

Подвижность крови - важнейшее ус­ловие жизни организма[Мф3] .

Мы продолжаем изучать систему кровообращения . Помните, что составляет систему кровообращения? Правильно! Сердечно‑сосудистая система + кровь .

Если сердечно‑сосудистую систему можно назвать транспортирующей системой, то кровь – транспортируемой средой.

Как нельзя се­бе представить государство без транс­портных линий связи, так нельзя по­нять существование человека или жи­вотного без движения крови по сосу­дам, когда во все органы и ткани разно­сится кислород, вода, белки и другие вещества.[Мф4]

Кровь является важнейшей составляющей внутренней среды организма человека, поэтому перед тем, как перейти к характеристике крови, необходимо познакомиться с основными вопросами физиологии внутренней среды.

1. Понятие «внутренняя среда организма[Мф5] »

Первичные организмы развивались в Мировом океане. Вода приносила им питательные вещества и принимала продукты обмена[Б6] . У многоклеточных организмов большинство клеток утратило контакт с внешней средой, да и среда эта для вышедших из воды существ существенно (!) изменилась. Была вода, стало сухо и не всегда комфортно. Но частичка того океана плещется в нас и сейчас, являясь основой внутренней среды организма.

Внутренняя среда организма [Мф7] – совокупность жидкостей принимающих непосредственное участие в процессах обмена веществ и поддержании гомеостаза организма[Мф8] . [a]

Понятие внутренняя среда организма ввел в физиологию К.Бернар в 1854-1857 гг. [b]

Внутренняя среда характеризуется динамическим постоянством[Мф9] .

Для описания этого состояния в 1929 г. У.Кэннон ввел термин гомеостаз [Мф10] [c].

В связи с выявлением роли биоритмов в деятельности живого организма хронобиология стала оперировать термином не «гомеостаз », а «гомеокинез »или «гомеорез », под которым понимается не только значение параметров, но и процесс их изменения во времени.

Однако в литературе чаще используется термин «гомеостаз», при этом имеют ввиду, что постоянство внутренней среды относительно[Мф11] .

Границы гомеостаза могут быть жесткими и пластичными. Их по­казатели зависят от видовых, индивидуальных, половых и других условий. Жесткими константами являются параметры внутренней среды , которые определяют оптимальную активность ферментов, т.е. возможность осуществления обменных процессов[Мф12] .--162- C.13]

Общая вода, жидкости организма и жидкости внутренней среды

Человеческий организм в основном состоит из воды.

Её относительное содержание изменяется с возрастом от 75 % у новорожденного до 55 % у пожилых людей [Б14] ].

У женщин относительное содержание воды меньше, чем у мужчин процентов на 5 %.

Баланс воды (поступление, образование, циркуляция, участие в обмене веществ, выведение) – тема других лекций, посвященных водно-солевому обмену.

Вода – основа всех жидких сред[Мф15] .

Жидкости организма разделены на следующие компартменты [d]:

Внутриклеточная (интрацеллюлярная[Б16]) жидкость

Внеклеточная (экстрацеллюлярная) жидкость

Интравазальная жидкость

Плазма крови

Экстравазальная жидкость

Межклеточная жидкость (син.: тканевая, интерстициальная)

Кристаллизационная (структурированная) вода кости и хряща (15 % всей воды организма[Б17])

Трансцеллюлярные [Б18] (специализированные) жидкости

Жидкости закрытых полостей (т.е. не имеющих прямого сообщения с внешней средой). [Мф19]

Ликвор (синонимы – цереброспинальная или спинно-мозговая жидкость)

Синовиальная (внутрисуставная[Б20]) жидкость

Смазка серозных оболочек (брюшина, плевра, перикард[Б21])

Жидкие среды глазного яблока

Жидкие среды внутреннего уха

Жидкости открытых полостей[Б22]

Секреты пищеварительных желёз (слюна, желудочный сок, жёлчь, сок поджелудочной железы, кишечный сок)

Увлажняющие жидкости (дыхательные пути, среднее и наружное ухо).

Жидкости, выделяемые из организма[Мф23] (моча, пот, слезы, молоко)

Обратите внимание! Жидкость форменных элементов крови - это внутриклеточная вода, поэтому к внеклеточной жидкости относится плазма крови, а не вся кровь.

К жидкостям внутренней средой организма относят:

тканевую (межклеточную) жидкость.

Однако[Б24] , следует включать в эту совокупность и специализированные жидкости.

Подробнее о ликворе см. [++601++] C.129-130.

В мозге различают цереброспинальную жидкость и межклеточную жидкость (внеклеточные пространства мозга[Б25]). Не отождествляйте эти понятия!

Под специализированными жидкостями чаще подразумевают жидкости закрытых полостей организма. Не следует забывать и о жидкостях открытых полостей организма. Все эти жидкости принимают участие в поддержании гомеостаза организма. Как Вы будете себя чувствовать при ответе, если во рту пересохнет?

Как правило, подчеркивают особую роль тканевой жидкости , поскольку лишь она контактирует с клетками организма[Б26] . Её называют истинной [Б27] внутренней средой организма. Есть мнение, что основой внутренней среды является кровь , а непосредственной питательной средой – тканевая жидкость[Б28]

Иногда клетка непосредственно (без посредничества тканевой жидкости) контактирует и осуществляет обмен с другими жидкостями внутренней среды. Например, кровь, соприкасаясь непосредственно с эндокардом и эндотелием сосудов, обеспечивает их жизнедеятельность[Мф29] .

Интерстиций (интерстициальное пространство) (лат. Interstitium промежуток, щель) – составная часть соединительной ткани[Мф30] и имеет довольно сложную структуру[Мф31] .

Полезно запомнить следующие отношения:

[Б32]

Распределение воды в организме в зависимости от возраста в % от массы тела[Б33]

Распределение воды в организме в зависимости от пола при средней массе тела 70 кг[Б34]

Распределение воды в организме женщины на 38-40-й неделе беременности в % от массы тела[Б35]

3. Гистогематические барьеры[Мф36]

На компартменты жидкости разделены внешними и внутренними барьерами[Мф37] .

Внешние барьеры – кожа, почки, органы дыхания, пищеварительный тракт, печень(!).

Внутренние барьеры – гистогематические.

Изолирующие (специализированные):

Гематоэнцефалический

Гематонейрональный

Гематотестикулярный

Гематоофтальмический

Частично изолирующие:

Гематохолический

Гематокортикосупраренальный

Гематотиреоидный

Гематопанкреатический

Неизолирующие:

Миогематические

Гематопаратиреоидный

Гематомедуллосупраренальный

Структурной основой гистогематических барьеров является эндотелий капилляров[Б38] . Барьером между внутриклеточным и внеклеточным жидкостными компартментами является биологическая мембрана. Биологические мембраны органоидов клетки (внутриклеточные барьеры делит жидкости на внутриклеточные компартменты[Б39] .[Б40]

Вода, не разделенная биологическими барьерами также компартметализирована. Вода связанная с белками, другими органическими соединениями, ионами (образует гидратные оболочки) называется гидратационной.

Вода связанная, с трудом вовлекаемая в общий круговорот воды в организме называется иммобильной (неподвижной).Вода не связанная, легко вовлекаемая в общий круговорот воды в организме называется мобильной .

Внеклеточные жидкости имеют довольно сходный [Б42] состав , что связывают с постоянным обменом между плазмой крови, лимфой, межтканевой жидкостью. Внутриклеточные жидкие среды по своему составу весьма различны между собой[Б43] .

Различие состава жидкостных компартментов определяет интенсивность обмена веществ между ними.


Похожая информация.


2014-05-31

Среди неорганических соединений живых организмов особая роль принадлежит воде. Вода является основной средой, в которой происходят процессы обмена веществ и превращения энергии.

Содержание воды в большинстве живых организмов составляет 60-70 %. Вода образует основу внутренней среды живых организмов (крови, лимфы, межклеточной жидкости). Уникальные свойства воды определяются структурой ее молекул. В молекуле воды один атом кислорода ковалентно связан с двумя атомами водорода. Молекула воды полярная (диполь). Положительный заряд сосредоточен на атомах водорода, поскольку кислород является более электроотрицательным, чем водород. Отрицательно заряженный атом кислорода одной молекулы воды притягивается к положительно заряженному атома водорода другой молекулы, образуя при этом водородная связь, который в 15-20 раз слабее, чем ковалентная. Поэтому водородные связи легко разрываются, что наблюдается, например, при испарении воды. Вследствие теплового движения молекул в воде некоторые водородные связи разрываются, некоторые образуются.

Таким образом, молекулы являются подвижными в жидком состоянии, что очень важно для процессов обмена веществ. Молекулы воды легко проникают через клеточные мембраны. Благодаря высокой полярности молекул вода является растворителем других полярных соединений. В зависимости от способности растворяться определенных соединений в воде, их условно разделяют на гидрофильные, или полярные, и гидрофобные, или неполярные. К гидрофильных соединений, растворимых в воде, относится большинство солей. Гидрофобные соединения (почти все жиры, некоторые белки) содержат неполярные группы, не образуют водородные связи, поэтому эти соединения не растворяются в воде. Она обладает высокой теплоемкостью и одновременно высокую для жидкостей теплопроводность. Эти свойства делают воду идеальной для поддержания теплового равновесия организма.

Для поддержания процессов жизнедеятельности отдельных клеток и организма в целом важное значение имеют минеральные соли. Живые организмы содержат как растворенные соли (в виде ионов), так и соли в твердом состоянии. Ионы разделяются на положительные (катионы металлических элементов К +, Na +, Са2 +, М2 + и др.) и отрицательные (анионы кислот соляной — Сl -, серной — НSO4 -, SО42 -, карбонатной — НСО3 -, фосфатной — Н2РО4 -, НРО42 — и др.).. Различная концентрация катионов К + и Na + в клетке и межклеточной жидкости вызывает разность потенциалов на мембране клетки; изменение проницаемости мембраны по К + и Na + под влиянием раздражения обеспечивает возникновение нервного и мышечного возбуждения. Анионы фосфорной кислоты поддерживают нейтральную реакцию внутриклеточной среды (рН = 6,9), анионы карбоновой кислоты — слабощелочную реакцию плазмы крови (рН = 7,4). Соединения кальция (СаСO3) входят в состав раковин моллюсков и простейших, панцирей раков. Соляная кислота создает кислую среду в желудке позвоночных животных и человека, обеспечивает этим активность ферментов желудочного сока. Остатки серной кислоты, присоединяясь к нерастворимых в воде соединений, обеспечивающих их растворимость, что способствует выведению данных соединений из клеток и организма.

Кровь, лимфа, тканевая жидкость образуют внутреннюю среду организма. Из плазмы крови, проникающей через стенки капилляров, формируется тканевая жидкость, которая омывает клетки. Между тканевой жидкостью и клетками постоянно происходит обмен веществ. Кровеносная и лимфатическая системы обеспечивают гуморальную связь между органами, объединяя обменные процессы в общую систему. Относительное постоянство физико-химических свойств внутренней среды способствует существованию клеток организма в довольно неизменных условиях и уменьшает влияние на них внешней среды. Постоянство внутренний среды - гомеостаз - организма поддерживается работой многих систем органов, которые обеспечивают саморегуляцию жизненно важных процессов, взаимосвязь с окружающей средой, поступление необходимых организму веществ и выводят из него продукты распада.

1. Состав и функции крови

Кровь выполняет следующие функции: транспортную, распре­деления теплоты, регуляторную, защитную, участвует в выделении, поддерживает постоянство внутренней среды организма.

В организме взрослого человека содержится около 5 л крови, в среднем 6-8% от массы тела. Часть крови (около 40%) не циркулирует по кровеносным сосудам, а находится в так называемом депо крови (в капиллярах и венах печени, селезенки, легких и кожи). Объем циркулирующей крови может меняться за счет изменения объема депонированной крови: во время мышечной работы, при кровопотерях, в условиях пониженного атмосферного давления кровь из депо выбрасывается в кровяное русло. Потеря 1/3- 1/2 объема крови может привести к смерти.

Кровь представляет собой непрозрачную красную жидкость, состоящую из плазмы (55%) и взвешенных в ней клеток, форменных элементов (45%) - эритроцитов, лейкоцитов и тромбоцитов.

1.1. Плазма крови

Плазма крови содержит 90-92% воды и 8-10% неорганических и органических веществ. Неорганические вещества составляют 0,9-1,0% (ионы Na, К, Mg, Са, CI, Р и др.). Водный раствор, который по концентрации солей соответствует плазме крови, называют физиологическим раствором. Его можно вводить в организм при недостатке жидкости. Среди органических веществ плазмы 6,5-8% составляют белки (альбумины, глобулины, фибриноген), около 2% приходится на низкомолекулярные органические вещества (глюкоза - 0,1%, аминокислоты, мочевина, мочевая кислота, липиды, креатинин). Белки наряду с минеральными солями поддерживают кислотно-щелочное равно­весие и создают определенное осмотическое давление крови.

1.2. Форменные элементы крови

В 1 мм крови содержится 4,5-5 млн. эритроцитов . Это безъядерные клетки, имеющие форму двояковогнутых дисков диаметром 7-8 мкм, толщиной 2-2,5 мкм (рис.1). Такая форма клетки увеличивает поверхность для диффузии дыхательных газов, а также делает эритроциты способными к обратимой деформации при прохождении через узкие изогнутые капилляры. У взрослых людей эритроциты образуются в красном костном мозге губчатого вещества костей и при выходе в кровяное русло теряют ядро. Время циркуляции в крови составляет около 120 сут., после чего они разрушаются в селезенке и печени. Эритроциты способны разрушаться и тканями других органов, о чем свидетельствует исчезновение «синяков» (подкожных кровоизлияний).

В эритроцитах содержится белок - гемоглобин , состоящий из белковой и небелковой частей. Небелковая часть (гем) содержит ион железа. Гемоглобин образует в капиллярах легких непрочное соединение с кислородом - оксигемоглобин. Это соединение по цвету отличается от гемоглобина, поэтому артериальная кровь (кровь, насыщенная кислородом) имеет ярко-алый цвет. Оксигемоглобин, отдавший кислород в капиллярах тканей, называют восстановленным. Он находится в венозной крови (крови, бедной кислородом), которая имеет более темный цвет, чем артериальная. Кроме того, в венозной крови содержится нестойкое соединение гемоглобина с углекислым газом - карбгемоглобин. Гемоглобин может входить в соединения не только с кислородом и углекислым газом, но и с другими газами, например с угарным газом, образуя прочное соединение карбоксигемоглобин . Отравление угарным газом вызывает удушье. При уменьшении количества гемоглобина в эритроцитах или уменьшении числа эритроцитов в крови возникает анемия.

Лейкоциты (6-8 тыс./мм крови) - ядерные клетки размером 8-10 мкм, способные к самостоятельным движениям. Различаются несколько типов лейкоцитов: базофилы, эозинофилы, нейтрофилы, моноциты и лимфоциты. Они образуются в красном костном мозге, лимфатических узлах и селезенке, разрушаются в селезенке. Продолжительность жизни большинства лейкоцитов - от нескольких часов до 20 сут., а лимфоцитов - 20 лет и более. При острых инфекционных заболеваниях число лейкоцитов быстро нарастает. Проходя сквозь стенки кровеносных сосудов, нейтрофилы фагоцитируют бактерии и продукты распада тканей и разрушают их своими лизосомными ферментами. Гной состоит главным образом из нейтрофилов или их остатков. И.И.Мечников назвал такие лейкоциты фагоцитами, а само явление поглощения и разрушения лейкоцитами чужеродных тел - фагоцитозом, что является одной из защитных реакций организма.

Рис. 1. Клетки крови человека:

а - эритроциты, б - зернистые и незернистые лейкоциты, в - тромбоциты

Увеличение числа эозинофилов наблюдается при аллергических реакциях и глистных инвазиях. Базофилы продуцируют биологически активные вещества - гепарин и гистамин. Гепарин базофилов препятствует свертыванию крови в очаге воспаления, а гистамин расширяет капилляры, что способствует рассасыванию и заживлению.

Моноциты - самые крупные лейкоциты; способность к фагоцитозу у них наиболее выражена. Они приобретают большое значение при хронических инфекционных заболеваниях.

Различают Т-лимфоциты (образуются в вилочковой железе) и В-лимфоциты (образуются в красном костном мозге). Они выполняют специфические функции в реакциях иммунитета.

Тромбоциты (250-400 тыс./мм 3)-мелкие безъядерные клетки; участвуют в процессах свертывания крови.

БИОЛОГИЯ КЛЕТКИ

Неорганические вещества

Среди неорганических соединений живых организмов особая роль принадлежит воде. Вода является основной средой, в котором происходят процессы обмена веществ и превращения энергии. Содержание воды в большинства живых организмов составляет 60-70 %. Вода образует основу внутренней среды живых организмов (крови, лимфы, межклеточной жидкости). Уникальные свойства воды определяются структурой ее молекул. В молекуле воды один атом Кислорода ковалентно связан с двумя атомами Водорода. Молекула воды полярна (диполь). Положительный заряд сосредоточен на атомах Водорода, поскольку Кислород является более електронегативним, чем Водород. Отрицательно заряженный атом Кислорода одной молекулы воды притягивается к положительно заряженному атому Водорода другой молекулы, образуя при этом водородная связь, который в 15-20 раз слабее, чем ковалентная. Поэтому водородные связи легко разрываются, что наблюдается, например, при испарении воды. Вследствие теплового движения молекул в воде некоторые водородные связи разрываются, некоторые образуются. Таким образом, молекулы является подвижными в жидком состоянии, что очень важно для процессов обмена веществ. Молекулы воды легко проникают через клеточные мембраны. Благодаря высокой полярности молекул вода является растворителем других полярных соединений. В зависимости от способности розчинюватися определенных соединений в воде, их условно делят на гидрофильные, или полярные, и гидрофобные, или неполярные. В гидрофильных соединений, растворимых в воде, относится большинство солей. Гидрофобные соединения (почти все жиры, некоторые белки) содержат неполярные группы, которые не образуют водородные связи, поэтому эти соединения не растворяются в воде. Она имеет высокую теплоемкость и одновременно высокую для жидкостей теплопроводность. Эти свойства делают воду идеальной для поддержания теплового равновесия организма.

Для поддержания процессов жизнедеятельности отдельных клеток и организма в целом важное значение имеют минеральные соли. Живые организмы содержат растворенные соли (в виде ионов), так и соли в твердом состоянии. Ионы делятся на положительные (катионы металлических элементов К + , N а + , Са 2+ , М 2+ т. д) и отрицательные (анионы кислот соляной - С l - , сульфатной - Н SO 4 - , S O 4 2- , карбонатной - НСО 3 - , фосфатной - Н 2 РО 4 - , НРО 4 2- и др.). Разная концентрация катионов К + и N а + в клетке и межклеточной жидкости вызывает разницу потенциалов на мембране клетки; изменение проницаемости мембраны по К + и N а + под влиянием раздражение обеспечивает возникновения нервного и мышечного возбуждения. Анионы фосфатной кислоты поддерживают нейтральную реакцию внутриклеточного среды (рН = 6,9), анионы карбоновой кислоты - слабощелочную реакцию плазмы крови (рН = 7,4). Соединения кальция (СаС O 3 ) входят в состав ракушек моллюсков и простейших, панцирей раков. Хлоридная кислота создает кислую среда в желудке позвоночных животных и человека, обеспечивает этим активность ферментов желудочного сока. Остатки серной кислоты, присоединяясь к нерастворимых в воде соединений, обеспечивающих их растворимость, что способствует выведению данных соединений из клеток и организма.

Любой организм - одноклеточный или многоклеточный - нуждается в определённых условиях существования. Эти условия обеспечивает организмам та среда, к которой они приспособились в ходе эволюционного развития.

Первые живые образования возникли в водах Мирового океана, и средой обитания для них служила морская вода. По мере усложнения живых организмов часть их клеток изолировалась от внешней среды. Так часть среды обитания оказалась внутри организма, что позволило многим организмам покинуть водную среду и начать жить на суше. Содержание солей во внутренней среде организма и в морской воде примерно одинаковое.

Внутренней средой для клеток и органов человека служат кровь, лимфа и тканевая жидкость.

Относительное постоянство внутренней среды

Во внутренней среде организма, помимо солей, очень много различных веществ - белки, сахар, жироподобные вещества, гормоны и т.д. каждый орган постоянно выделяет во внутреннюю среду продукты своей жизнедеятельности и получает из неё необходимые для себя вещества. И, несмотря на такой активный обмен, состав внутренней среды остаётся практически неизменным.

Выходящая из крови жидкость, становится частью тканевой жидкости. Большая часть этой жидкости поступает снова в капилляры, прежде чем они соединяются с венами, по которым кровь возвращается к сердцу, однако около 10% жидкости не попадает в сосуды. Стенки капилляров состоят из одного слоя клеток, но между соседними клетками есть узкие щели. Сокращение сердечной мышцы создаёт давление крови, в результате чего вода с растворёнными в ней солями и питательными веществами проходит через эти щели.

Все жидкости тела связаны друг с другом. Внеклеточная жидкость контактирует с кровью и со спинно-мозговой жидкостью, омывающей спинной и головной мозг. Это означает, что регуляция состава жидкостей тела происходит централизовано.

Тканевая жидкость омывает клетки и служит для них средой обитания. Она постоянно обновляется через систему лимфатических сосудов: эта жидкость собирается в сосуды, а затем по самому крупному лимфатическому сосуду попадает в общий кровоток, где смешивается с кровью.

Состав крови

Хорошо знакомая всем красная жидкость, в действительности представляет собой ткань. Долгое время за кровью признавали могучую силу: кровью скрепляли священные клятвы; жрецы заставляли своих деревянных идолов «плакать кровью»; древние греки приносили кровь в жертву своим богам.

Некоторые философы Древней Греции считали кровь носителем души. Древнегреческий врач Гиппократ назначал душевнобольным кровь здоровых людей. Он думал, что в крови здоровых людей - здоровая душа. И действительно, кровь - самая удивительная ткань нашего организма. Подвижность крови - важнейшее условие жизни организма.

Около половины объёма крови составляет жидкая её часть - плазма с растворёнными в ней солями и белками; другую половину составляют различные форменные элементы крови.

Форменные элементы крови делятся на три основные группы: белые кровяные клетки (лейкоциты), красные кровяные клетки (эритроциты) и кровяные пластинки, или тромбоциты. Все они образуются в костном мозгу (мягкая ткань, заполняющая полость трубчатых костей), но некоторые лейкоциты способны размножаться уже при выходе из костного мозга. Существует много различных типов лейкоцитов - большая часть участвует в защите организма от болезней.

Плазма крови

В 100 мл плазмы крови здорового человека содержится около 93 г воды. Остальная часть плазмы состоит из органических и неорганических веществ. Плазма содержит минеральные вещества, белки, углеводы, жиры, продукты обмена веществ, гормоны витамины.

Минеральные вещества плазмы представлены солями: хлоридами, фосфатами, карбонатами и сульфатами натрия, калия, кальция и магния. Они могут находиться как в виде ионов, так и в неионизированном состоянии. Даже незначительное нарушение солевого состава плазмы может сказаться губительным для многих тканей, и прежде всего для клеток самой крови. Суммарная концентрация минеральных содей, белков, глюкозы, мочевины и других веществ, растворённых в плазме, создаёт осмотическое давление. Благодаря осмотическому давлению происходит проникновение жидкости через клеточные оболочки, что обеспечивает обмен воды между кровью и тканью. Постоянство осмотического давления крови имеет важное значение для жизнедеятельности клеток организма. Мембраны многих клеток, в том числе и клеток крови, тоже являются полупроницаемыми.

Эритроциты

Эритроциты являются самыми многочисленными клетками крови; их основная функция состоит в переносе кислорода. Условия, при которых повышается потребность организма в кислороде, например жизнь на больших высотах или постоянная физическая нагрузка, стимулируют образование эритроцитов. Эритроциты живут в кровяном русле около четырёх месяцев, после чего разрушаются.

Лейкоциты

Лейкоциты , или белые кровяные тельца непостоянной формы. Они имеют ядро, погружённое в бесцветную цитоплазму. Основная функция лейкоцитов - защитная. Лейкоциты не только разносятся током крови, но и способны к самостоятельному передвижению с помощью ложноножек (псевдоножек). Проникая сквозь стенки капилляров, лейкоциты движутся к скоплению болезнетворных микробов в ткани и с помощью ложноножек захватывают и переваривают их. Это явление было открыто И.И.Мечниковым.

Тромбоциты, или кровяные пластинки

Тромбоциты , или кровяные пластинки очень хрупкие, легко разрушаются при повреждении кровеносных сосудов или при соприкосновении крови с воздухом.

Тромбоциты играют важную роль в свёртывании крови. Повреждённые ткани выделяют гистомин - вещество, усиливающее приток крови к повреждённому месту и способствующее выходу жидкости и белков системы свёртывания крови из кровотока в ткань. В результате сложной последовательности реакций быстро образуются тромбы, которые останавливают кровотечение. Тромбы препятствуют проникновению в рану бактерий и других чужеродных факторов.

Механизм свёртывания крови очень сложен. В плазме есть растворимый белок фибриноген, который при свёртывании крови превращается в нерастворимый фибрин и выпадает в осадок в виде длинных нитей. Из сети этих нитей и кровяных телец, которые задержались в сети, образуется тромб .

Этот процесс происходит только при наличии солей кальция. Поэтому если из крови удалить кальций, кровь теряет способность свёртываться. Это свойство используют при консервировании и переливании крови.

Кроме кальция, в процессе свёртывания принимают участие и другие факторы, например витамин К, без которого нарушается образование протромбина.

Функции крови

Кровь выполняет разнообразные функции в организме: доставляет клеткам кислород и питательные вещества; уносит углекислый газ и конечные продукты обмена; участвует в регуляции деятельности различных органов и систем посредством переноса биологически активных веществ - гормонов и др.; способствует сохранению постоянства внутренней среды - химического и газового состава, температуры тела; защищает организм от инородных тел и вредных веществ, разрушая и обезвреживая их.

Защитные барьеры организма

Защита организма от инфекций обеспечивается не только фагоцитарной функцией лейкоцитов, но и образованием особых защитных веществ - антител и антитоксинов . Они вырабатываются лейкоцитами и тканями различных органов в ответ на внедрение в организм возбудителей заболеваний.

Антитела - это белковые вещества, способные склеивать микроорганизмы, растворять или разрушать их. Антитоксины обезвреживают яды, выделяемые микробами.

Защитные вещества специфичны и действуют только на те микроорганизмы и их яды, под влиянием которых они образовались. Антитела могут сохраняться в крови в течение длительного времени. Благодаря этому человек становится невосприимчивым к некоторым инфекционным заболеваниям.

Невосприимчивость к заболеваниям, обусловленная наличием в крови и тканях специальных защитных веществ, называется иммунитетом .

Иммунная система

Иммунитет, по современным взглядам, - невосприимчивость организма к различным факторам (клетками, веществам), которые несут генетически чужеродную информацию.

Если в организме появляются какие-либо клетки или сложные органические вещества, отличающиеся от клеток и веществ организма, то благодаря иммунитету они устраняются, уничтожаются. Основная задача иммунной системы - поддержание генетического постоянства организма в онтогенезе. При делении клеток вследствие мутаций в организме нередко образуются клетки с изменённым геномом. Чтобы эти клетки-мутанты в ходе дальнейшего деления не привели к нарушениям развития органов и тканей, они уничтожаются иммунными системами организма.

В организме иммунитет обеспечивается благодаря фагоцитарным свойствам лейкоцитов и способностью некоторых клеток тела, вырабатывать защитные вещества - антитела . Следовательно по своей природе иммунитет может быть клеточным (фагоцитарным) и гуморальным (антитела).

Иммунитет к инфекционным заболеваниям делят на естественный, выработанный самим организмом без искусственных вмешательств, и искусственный, возникающий в следствие введения в организм специальных веществ. Естественный иммунитет проявляется у человека с рождения (врождённый ) или возникает после перенесённых заболеваний (приобретённый ). Искусственный иммунитет может быть активным или пассивным. Активный иммунитет вырабатывается при введении в организм ослабленных или убитых возбудителей заболеваний или их ослабленных токсинов. Этот иммунитет возникает не сразу, но сохраняется длительное время - несколько лет и даже всю жизнь. Пассивный иммунитет возникает, когда в организм вводят лечебную сыворотку с уже готовыми защитными свойствами. Этот иммунитет кратковременный, зато проявляется сразу же после введения сыворотки.

Свёртывание крови также относится к защитным реакциям организма. Оно защищает организм от кровопотери. Реакция состоит в образовании сгустка крови - тромба , закупоривающего раневой участок и останавливающий кровотечение.

Loading...Loading...