Распределение галактик в пространстве. Пространственное распределение галактик Укажите правильное расположение пространственного распределения галактик

Наиболее яркая черта пространственного распределения шаровых скоплений в Галактике - сильная концентрация к ее центру. На рис. 8-8 показано распределение шаровых скоплений на всей небесной сфере, здесь центр Галактики находится в центре рисунка, северный полюс Галактики - вверху. Не заметно зоны избегания вдоль плоскости Галактики, так что межзвёздное поглощение в диске не скрывает от нас значимого количества скоплений.

На рис. 8-9 приведено распределение шаровых скоплений вдоль расстояния от центра Галактики. Налицо сильная концентрация к центру - большинство шаровых скоплений находятся в сфере радиусом ≈ 10 кпк. Именно в пределах этого радиуса расположены практически все шаровые скопления, образовавшиеся из вещества единого протогалактического облака и сформировавшие подсистемы толстого диска (скопления с > -1.0) и собственного гало (менее металличные скопления с экстремально голубыми горизонтальными ветвями). Малометалличные скопления с аномально красными для своей металличности горизонтальными ветвями образуют сфероидальную подсистему аккрецированного гало радиусом ≈ 20 кпк. Этой же подсистеме принадлежат еще около полутора десятков более далеких скоплений (см. рис. 8-9), среди которых имеется несколько объектов с аномально высокими содержаниями металлов.


Скопления аккрецированного гало, как полагают, отобраны гравитационным полем Галактики у галактик-спутников. На рис. 8-10 схематически показана эта структура согласно Борковой и Марсакову из Южного федерального университета. Здесь буквой C обозначен центр Галактики, S - приблизительное положение Солнца. При этом к сплюснутой подсистеме принадлежат скопления с большим содержанием металлов. На более подробном обосновании разделения шаровых скоплений на подсистемы мы остановимся в § 11.3 и § 14.3 .

Шаровые скопления распространены и в других галактиках, причем их пространственное распределение в спиральных галактиках напоминает распределение в нашей Галактике. Заметно отличаются от Галактических скопления Магеллановых Облаков. Главное отличие в том, что наряду со старыми объектами, такими же, как в нашей Галактике, в Магеллановых Облаках наблюдаются и молодые скопления - так называемые голубые шаровые скопления. Вероятно, в Магеллановых Облаках эпоха образования шаровых скоплений либо продолжается, либо закончилась сравнительно недавно. В нашей Галактике молодых шаровых скоплений, аналогичных голубым скоплениям Магеллановых Облаков, похоже, нет, так что эпоха образования шаровых скоплений в нашей Галактике закончилась очень давно.

Шаровые скопления являются эволюционирующими объектами, постепенно теряющими звёзды в процессе динамической эволюции . Так, у всех скоплений, для которых удалось получить качественное оптическое изображение, обнаружились следы приливного взаимодействия с Галактикой в форме протяженных деформаций (приливных хвостов). В настоящее время такие теряемые звёзды наблюдаются и в виде повышений звёздной плотности вдоль галактических орбит скоплений. Некоторые скопления, орбиты которых проходят вблизи галактического центра, разрушаются его приливным воздействием. При этом галактические орбиты скоплений также эволюционируют за счёт динамического трения.

На рис. 8-11 приведена диаграмма зависимости масс шаровых скоплений от их галактоцентрических положений. Штриховыми линиями ограничена область медленной эволюции шаровых скоплений. Верхняя линия соответствует критическому значению массы, устойчивой для эффектов динамического трения , приводящих к замедлению массивного звёздного скопления и падению его в центр Галактики, а нижняя - для эффектов диссипации с учетом приливных при пролете скоплений сквозь галактическую плоскость. Причина динамического трения внешняя: движущееся сквозь звёзды поля массивное шаровое скопление притягивает встречающиеся на своем пути звёзды и заставляет их облетать себя сзади по гиперболической траектории, из-за чего позади него образуется повышенная плотность звёзд, создающих тормозящее ускорение. В результате скопление замедляется и начинает по спиральной траектории приближаться к галактическому центру, пока за конечное время не упадет на него. Чем больше масса скопления, тем меньше это время. Диссипация (испарение) шаровых скоплений происходит из-за постоянно действующего в скоплении внутреннего механизма звёздно-звёздной релаксации, распределяющего звёзды по скоростям по закону Максвелла. В итоге звёзды, получившие наибольшие приращения скорости, покидают систему. Этот процесс существенно ускоряют прохождения скопления вблизи ядра Галактики и сквозь галактический диск. Таким образом, с большой вероятностью можно сказать, что скопления, лежащие на диаграмме вне области, ограниченной этими двумя линиями, уже заканчивают свой жизненный путь.

Интересно, что аккрецированные шаровые скопления обнаруживают зависимость своих масс от положения в Галактике. Сплошные линии на рисунке представляют собой прямые регрессии, проведенные для генетически связанных (черные точки) и аккрецированных (открытые кружки) шаровых скоплений. Видно, что генетически связанные скопления не обнаруживают изменения средней массы с увеличением расстояния от галактического центра. Зато для аккрецированных скоплений налицо отчетливая антикорреляция. Таким образом возникает требующий ответа вопрос, почему во внешнем гало с увеличением галактоцентрического расстояния наблюдается увеличивающийся дефицит массивных шаровых скоплений (практически пустой правый верхний угол на диаграмме)?


Обычно галактики встречаются небольшими группами, содержащими по десятку членов, часто объединяющимися в обширные скопления сотен и тысяч галактик. Наша Галактика входит в состав так называемой Местной группы, включающей в себя три гигантские спиральные галактики (наша Галактика, туманность Андромеды и туманность в созвездии Треугольника), а также более 15 карликовых эллиптических и неправильных галактик, крупнейшими из которых являются Магеллановы Облака. В среднем размеры скоплений галактик составляют около 3 Мпс. В отдельных случаях диаметр их может превышать 10-20 Мпс. Они делятся на рассеянные (неправильные) и сферические (правильные) скопления. Рассеянные скопления не обладают правильной формой и имеют нерезкие очертания. Галактики в них весьма слабо концентрируются к центру. Примером гигантского рассеянного скопления может служить ближайшее к нам скопление галактик в созвездии Девы. На небе оно занимает примерно 120 кв. градусов и содержит несколько тысяч преимущественно спиральных галактик. Расстояние до центра этого скопления составляет около 11 Мпс. Сферические скопления галактик более компактны, чем рассеянные, и обладают сферической симметрией. Их члены заметно концентрируются к центру. Примером сферического скопления является скопление галактик в созвездии Волос Вероники, содержащее очень много эллиптических и линзообразных галактик (рис. 242). Его диаметр составляет почти 12 градусов. В нем содержатся около 30 000 галактик ярче 19 фотографической звездной величины. Расстояние до центра скопления составляет около 70 Мпс. С многими богатыми скоплениями галактик связаны мощные протяженные источники рентгеновского излучения, природа которого, скорее всего, связана с наличием горячего межгалактического газа, подобного коронам отдельных галактик.

Есть основания полагать, что скопления галактик в свою очередь также распределены неравномерно. Согласно некоторым исследованиям, окружающие нас скопления и группы галактик образуют грандиозную систему - Сверхгалактику. Отдельные галактики при этом, по-видимому, концентрируются к некоторой плоскости, которую можно называть экваториальной плоскостью Сверхгалактики. Только что рассмотренное скопление галактик в созвездии Девы находится в центре такой гигантской системы. Масса нашей Сверхгалактики должна составлять около1015 масс Солнца, а ее диаметр порядка 50 Мпс. Однако реальность существования подобных скоплений галактик второго порядка в настоящее время остается спорной. Если они и существуют, то лишь как слабо выраженная неоднородность распределения галактик во Вселенной, так как расстояния между ними немногим могут превышать их размеры. Об эволюции галактик Соотношение общего количества звездного и межзвездного вещества в Галактике со временем изменяется, поскольку из межзвездной диффузной материи образуются звезды, а они в конце своего эволюционного пути возвращают в межзвездное пространство только часть вещества; некоторая его часть остается в белых карликах. Таким образом, количество межзвездного вещества в нашей Галактике должно со временем убывать. То же самое должно происходить и в других галактиках. Перерабатываясь в звездных недрах, вещество Галактики постепенно изменяет химический состав, обогащаясь гелием и тяжелыми элементами. Предполагается, что Галактика образовалась из газового облака, которое состояло главным образом из водорода. Возможно даже, что, кроме водорода, оно никаких других элементов и не содержало. Гелий и тяжелые элементы образовались в таком случае в результате термоядерных реакций внутри звезд. Образование тяжелых элементов начинается с тройной гелиевой реакции ЗНе4 ® C 12, затем С12 соединяется с a-частицами, протонами и нейтронами, продукты этих реакций подвергаются дальнейшим преобразованиям, и так появляются все более и более сложные ядра. Однако образование самых тяжелых ядер, таких как уран и торий, постепенным наращиванием объяснить нельзя. При этом неизбежно пришлось бы пройти через стадию неустойчивых радиоактивных изотопов, которые распадутся быстрее, чем успеют захватить следующий нуклон. Поэтому предполагается, что самые тяжелые элементы, стоящие в конце менделеевской таблицы, образуются при вспышках сверхновых звезд. Вспышка сверхновой представляет собой результат быстрого сжатия звезды. При этом температура катастрофически возрастает, в сжимающейся атмосфере идут цепные термоядерные реакции и возникают мощные потоки нейтронов. Интенсивность нейтронных потоков может быть столь велика, что промежуточные неустойчивые ядра не успевают разрушиться. Прежде чем это произойдет, они захватывают новые нейтроны и становятся устойчивыми. Как уже упоминалось, содержание тяжелых элементов в звездах сферической составляющей много меньше, чем в звездах плоской подсистемы. Это объясняется, по-видимому, тем, что звезды сферической составляющей образовались в самой начальной стадии эволюции Галактики, когда межзвездный газ был еще беден тяжелыми элементами. В то время межзвездный газ представлял собой почти сферическое облако, концентрация которого увеличивалась к центру. Такое же распределение сохранили и звезды сферической составляющей, образовавшиеся в эту эпоху. В результате столкновений облаков межзвездного газа их скорость постепенно уменьшалась, кинетическая энергия переходила в тепловую и менялась общая форма и размеры газового облака. Расчеты показывают, что в случае быстрого вращения такое облако должно было принять форму сплющенного диска, что мы и наблюдаем в нашей Галактике. Звезды, образовавшиеся в более позднее время, образуют поэтому плоскую подсистему. К тому времени, как межзвездный газ сформировался в плоский диск, он прошел переработку в звездных недрах, содержание тяжелых элементов значительно увеличилось и звезды плоской составляющей поэтому тоже богаты тяжелыми элементами. Часто звезды плоской составляющей называют звездами второго поколения, а звезды сферической составляющей - звездами первого поколения, чтобы подчеркнуть тот факт, что звезды плоской составляющей образовались из вещества, уже побывавшего в звездных недрах. Аналогичным образом протекает, вероятно, эволюция и других спиральных галактик. Форма спиральных рукавов, в которых сосредоточен межзвездный газ, по-видимому, определяется направлением силовых линий общего галактического магнитного поля. Упругость магнитного поля, к которому "приклеен" межзвездный газ, ограничивает уплощение газового диска. Если бы на межзвездный газ действовала только сила тяжести, его сжатие продолжалось бы неограниченно. При этом вследствие большой плотности он быстро сконденсировался бы в звезды и практически исчез бы. Есть основания полагать, что скорость образования звезд приблизительно пропорциональна квадрату плотности межзвездного газа.

Если галактика вращается медленно, то межзвездный газ собирается под действием силы тяжести в центре. По-видимому, в таких галактиках магнитное поле слабее и меньше препятствует сжатию межзвездного газа, чем в быстро вращающихся. Большая плотность межзвездного газа в центральной области приводит к тому, что он быстро расходуется, превращаясь в звезды. В результате медленно вращающиеся галактики должны иметь приблизительно сферическую форму с резким увеличением звездной плотности в центре. Мы знаем, что как раз такие характеристики имеют эллиптические галактики. По-видимому, причина их отличия от спиральных заключается в более медленном вращении. Из сказанного выше понятно также, почему в эллиптических галактиках мало звезд ранних классов и мало межзвездного газа.

Таким образом, эволюцию галактик можно проследить начиная со стадии газового облака приблизительно сферической формы. Облако состоит из водорода, оно неоднородно. Отдельные сгустки газа, двигаясь, сталкиваются друг с другом, - потеря кинетической энергии приводит к сжатию облака. Если оно вращается быстро, получается спиральная галактика, если медленно - эллиптическая. Естественно задать вопрос, почему вещество во Вселенной разбилось на отдельные газовые облака, ставшие потом галактиками, почему мы наблюдаем разлет этих галактик, в какой форме находилась материя во Вселенной до того, как образовались галактики.

Среди всё более слабых по блеску объектов число Г. быстро возрастает. Так, Г. ярче 12-й звёздной величины известно ок. 250, 15-й - уже ок. 50 тыс., а число Г., к-рые могут быть сфотографированы 6-метровым телескопом на пределе его возможностей, составляет многие миллиарды. Это указывает на значит. удалённость большинства Г.

Внегалактич. астрономия исследует размеры звёздных систем, их массы, строение, свойства оптич., ИК-, рентг. и радиоизлучения. Изучение пространственного распределения Г. выявляет крупномасштабную структуру Вселенной (можно сказать, что доступная наблюдению часть Вселенной - это мир Г.). В исследовании пространственного распределения Г. и путей их эволюции внегалактич. астрономия смыкается с космологией - наукой о Вселенной в целом.

Одной из важнейших во внегалактич. астрономии остаётся проблема определения расстоянии до Г. Благодаря тому что в ближайших Г. найдены , а также ярчайшие звёзды постоянного блеска (сверхгиганты), удалось установить расстояния до этих Г. До ещё более удалённых Г., в к-рых невозможно различить даже сверхгигантские звёзды, расстояния оцениваются иными способами (см. ).

В 1912 г. амер. астроном В. Слайфер обнаружил замечательное св-во Г.: в спектрах далёких Г. все спектр. линии оказались смещёнными к длинноволновому (красному) концу по сравнению с такими же линиями в спектрах источников, неподвижных относительно наблюдателя (т. н. линий). В 1929 г. амер. астроном Э. Хаббл, сравнивая расстояния до Г. и их красные смещения, обнаружил, что последние растут в среднем прямо пропорционально расстояниям (см. ). Этот закон дал в руки астрономов эффективный метод определения расстояний до Г. по их красному смещению. Измерены красные смещения тысяч Г. и сотен .

Определение расстояний до Г. и их положения на небе позволило установить, что встречаются одиночные и двойные Г., группы Г., большие скопления их и даже облака скоплений (сверхскопления). Ср. расстояния между Г. в группах и скоплениях составляют неск. сотен кпк; это примерно в 10-20 раз больше размера крупнейших Г. Ср. расстояния между группами Г., одиночными Г. и кратными системами составляют 1-2 Мпк, расстояния между скоплениями - десятки Мпк. Т. о., Г. заполняют пространство с большей относительной плотностью, чем звёзды внутригалактич. пространство (расстояния между звёздами в среднем в 20 млн. раз больше их диаметров).

По мощности излучения Г. можно подразделить на неск. классов светимости. Самый широкий диапазон светимостей наблюдается у эллиптич. Г., в центральных областях нек-рых скоплений Г. обнаружены т. н. cD-галактики, являющиеся рекордными по светимости (абс. звёздная величина - 24 m , светимость ~10 45 эрг/с) и массе (). А в нашей Местной группе Г. найдены эллиптич. Г. малой светимости (абс. величины от -14 до-6 m , т. е. светимости ~10 41 -10 38 эрг/с) и массы (10 8 -10 5 ). У спиральных Г. интервал абс. звёздных величин составляет от -22 до -14 m , светимостей - от 10 44 до 10 41 эрг/с, интервал масс 10 12 -10 8 . Неправильные Г. по абс. величинам слабее - 18 m , их светимости 10 43 эрг/с, массы .

Образование молодых звёзд идёт ещё в центральной области Галактики. К центру Галактики падает газ, не имеющий вращательного момента. Здесь рождаются звёзды 2-го поколения сферич. подсистемы, составляющие ядро Галактики. Но благоприятных условии для образования звёзд-сверхгигантов в ядре не имеется, так как газ распадается на небольшие сгустки. В тех же редких случаях, когда газ передаёт вращательный момент окружающей среде и сжимается в массивное тело - массой в сотни и тысячи масс Солнца, этот процесс не завершается благополучно: сжатие газа не приводит к образованию устойчивой звезды, может произойти и возникнуть . Коллапс сопровождается выбросом части вещества из области галактич. ядра (см. ).

Чем массивнее спиральная Г., тем сильнее тяготение сжимает спиральные рукава, поэтому у массивных Г. рукава тоньше, в них больше звёзд и меньше газа (больше образуется звёзд). Напр., в гигантской туманности М81 видны тонкие спиральные рукава, тогда как в туманности М33, являющейся спиралью средних размеров, рукава значительно шире.

В зависимости от типа спиральные Г. имеют также разные скорости образования звёзд. Наибольшая скорость у типа Sc (ок. 5 в год), наименьшая - у Sa (ок. 1 в год). Высокая скорость звездообразования у первых связана ещё, по-видимому, с поступлением газа из галактич. корон.

У эллиптич. звёздных систем эволюционный путь должен быть проще. Вещество в них с самого начала не обладало значительными вращательным моментом и магн. полем. Поэтому сжатие в процессе эволюции не привело такие системы к заметному вращению и усилению магн. поля. Весь газ в этих системах с самого начала превратился в звёзды сферич. подсистемы. В ходе последующей эволюции звёзды выбрасывали газ, к-рый опускался к центру системы и шёл на образование звёзд нового поколения всё той же сферич. подсистемы. Темп звездообразования в эллиптич. Г. должен быть равен скорости поступления газа из проэволюционировавших звёзд, в основном сверхновых звёзд, поскольку истечение вещества из звёзд в эллиптич. Г. незначительно. Годовая потеря газа звёздами в эллиптич. Г. составляет по расчётам ~0,1 на галактику массой 10 11 . Из расчётов также следует, что центральные части эллиптич. Г. из-за присутствия молодых звёзд должны быть голубее, чем периферийные области Г. Однако это не наблюдается. Дело в том, что значит. часть образующегося газа в эллиптич. Г. выдувается горячим ветром, возникающим при вспышках сверхновых звёзд, а в скоплениях Г.- ещё и довольно плотным горячим межгалактич. газом, обнаруженным в последнее время по его рентг. излучению.

Сравнивая количество звёзд разных поколений у большого числа однотипных Г., можно установить возможные пути их эволюции. У более старых Г. наблюдается истощение запасов межзвёздного газа и снижение в связи с этим темпов образования и общего количества звёзд новых поколений. Зато в них много - сверхплотных звёзд малых размеров, представляющих собой одну из последних стадий эволюции звёзд. В этом и заключается старение Г. Следует отметить, что в начале эволюции Г. имели, по-видимому, более высокую светимость, т. к. в них было больше массивных молодых звёзд. Выявить эволюционное изменение светимости Г. можно в принципе сравнивая светимости близких и очень далёких Г., от к-рых свет идёт многие млрд. лет.

Внегалактич. астрономия пока ещё не дала определённого ответа на вопросы, связанные с возникновением скоплений Г., в частности, почему в сферич. скоплениях преобладают эллиптич. и линзообразные системы. По-видимому, из относительно небольших облаков газа, не имевших вращательного момента, образовались сферич. скопления с преобладанием эллиптич. и линзообразных систем, также имеющих малый вращательный момент. А из больших облаков газа, обладавших существенным вращательным моментом, возникли скопления Г., подобные Сверхскоплению в Деве. Здесь было больше вариантов распределения вращательного момента среди отдельных сгустков газа, из к-рых образовались Г., и поэтому в таких скоплениях чаще встречаются спиральные системы.

Эволюция Г. в скоплениях и группах обладает рядом особенностей. Расчёты показали, что при столкновениях Г. их протяжённые газовые короны должны "обдираться" и рассеиваться по всему объёму группы или скопления. Этот межгалактич. газ удалось обнаружить по высокотемпературному рентг. излучению, идущему от скоплений Г. Кроме того, массивные члены скоплений, двигаясь среди остальных, создают "динамическое трение": своим тяготением они увлекают соседние Г., но в свою очередь испытывают торможение. По-видимому, так образовался Магелланов поток в Местной группе Г. Иногда находящиеся в центре скопления массивные Г. не только "обдирают" газовые короны проходящих через них Г., но захватывают и звёзды "посетителя". Предполагается, в частности, что cD-галактики, обладающие массивными гало, образовали их таким "каннибальским" путём.

По существующим расчётам, через 3 млрд. лет "каннибалом" станет и наша Галактика: она поглотит приближающееся к ней Большое Магелланово Облако.

Равномерное распределение материи в масштабах Метагалактики определяет одинаковость св-в материи и пространства во всех частях Метагалактики (однородность) и одинаковость их во всех направлениях (изотропия). Эти важные св-ва Метагалактики характерны, по-видимому, для совр. состояния Метагалактики, однако в прошлом, в самом начале расширения, анизотропия и неоднородность материи и пространства могли существовать. Поиски следов анизотропии и неоднородности Метагалактики в прошлом представляют собой сложную и актуальную задачу внегалактической астрономии, к решению которой астрономы еще только подходят.

Обычно галактики встречаются небольшими группами, содержащими по десятку членов, часто объединяющимися в обширные скопления сотен и тысяч галактик. Наша Галактика входит в состав так называемой Местной группы, включающей в себя три гигантские спиральные галактики (наша Галактика, туманность Андромеды и туманность в созвездии Треугольника), а также более 15 карликовых эллиптических и неправильных галактик, крупнейшими из которых являются Магеллановы Облака. В среднем размеры скоплений галактик составляют около 3 Мпс. В отдельных случаях диаметр их может превышать 10-20 Мпс. Они делятся на рассеянные (неправильные) и сферические (правильные) скопления.
Рассеянные скопления не обладают правильной формой и имеют нерезкие очертания. Галактики в них весьма слабо концентрируются к центру. Примером гигантского рассеянного скопления может служить ближайшее к нам скопление галактик в созвездии Девы (241). На небе оно занимает примерно 120 кв. градусов и содержит несколько тысяч преимущественно спиральных галактик. Расстояние до центра этого скопления составляет около 11 Мпс.

Рис. 12.1. Пространственное распределение галактик по данным SDSS. Зелеными точками отмечены все галактики (в данном телесном угле) с яркостью, превышающей некоторую. Красные точки указывают галактики наибольшей светимости из удаленных скоплений, образующие довольно однородную популяцию; в соответствующей системе отсчета их спектр смещен в красную область по сравнению с обычными галактиками. Голубые и синие точки показывают расположение обычных квазаров. Параметр h примерно равен 0.7.

Сферические скопления галактик более компактны, чем рассеянные, и обладают сферической симметрией. Их члены заметно концентрируются к центру. Примером сферического скопления является скопление галактик в созвездии Волос Вероники, содержащее очень много эллиптических и линзообразных галактик (242). Его диаметр составляет почти 12 градусов. В нем содержатся около 30 000 галактик ярче 19 фотографической звездной величины. Расстояние до центра скопления составляет около 70 Мпс. Со многими богатыми скоплениями галактик связаны мощные протяженные источники рентгеновского излучения, природа которого, скорее всего, связана с наличием горячего межгалактического газа, подобного коронам отдельных галактик.
Есть основания полагать, что скопления галактик в свою очередь также распределены неравномерно. Согласно некоторым исследованиям, окружающие нас скопления и группы галактик образуют грандиозную систему - Сверхгалактику. Отдельные галактики при этом, по-видимому, концентрируются к некоторой плоскости, которую можно называть экваториальной плоскостью Сверхгалактики. Только что рассмотренное скопление галактик в созвездии Девы находится в центре такой гигантской системы. Масса нашей Сверхгалактики должна составлять около 1015 масс Солнца, а ее диаметр порядка 50 Мпс. Однако реальность существования подобных скоплений галактик второго порядка в настоящее время остается спорной. Если они и существуют, то лишь как слабо выраженная неоднородность распределения галактик во Вселенной, так как расстояния между ними немногим могут превышать их размеры.

Ви переглядаєте статтю (реферат): «Пространственное распределение галактик » з дисципліни «Астрофізика »

Реферати та публікації на інші теми :

где H ¾ постоянная Хаббла. В соотношении (6.12) V выражено в км/с , а r ¾ в Мпс .

Этот закон получил название закона Хаббла . Постоянная Хаббла в настоящее время принимается равной H = 72 км/(с∙Мпк ).

Закон Хаббла позволяет говорить о том, что Вселенная расширяется . Однако это вовсе не означает, что наша Галактика является центром, от которого и идет расширение. В любой точке Вселенной наблюдатель увидит ту же самую картину: все галактики имеют красное смещение, пропорциональное расстоянию до них. Поэтому иногда говорят, что расширяется само пространство. Это, естественно, следует понимать условно: галактики, звезды, планеты и мы с вами не расширяемся.

Зная величину красного смещения , например, для какой-нибудь галактики, мы можем с большой точностью определить расстояние до нее, используя соотношение для эффекта Доплера (6.3) и закон Хаббла. Но для z ³ 0,1 обычная формула Доплера уже неприменима. В таких случаях пользуются формулой из специальной теории относительности:

. (6.13)

Галактики очень редко бывают одиночными. Обычно галактики встречаются небольшими группами, содержащими по десятку членов, часто объединяющимися в обширные скопления сотен и тысяч галактик. Наша Галактика входит в состав так называемой Местной группы , включающей в себя три гигантские спиральные галактики (наша Галактика, туманность Андромеды и галактика в созвездии Треугольника), а также несколько десятков карликовых эллиптических и неправильных галактик, крупнейшими из которых явля ктик составляют несколько мегапарсеков. Они делятся на иррегулярные и регулярные скопления. Иррегулярные скопления не обладают правильной формой и имеют нерезкие очертания. Галактики ются Магеллановы Облака.

В среднем размеры скоплений гала в них весьма слабо концентрируются к центру. Примером гигантского рассеянного скопления может служить ближайшее к нам скопление галактик в созвездии Девы. На небе оно занимает примерно 120 кв. градусов и содержит несколько тысяч преимущественно спиральных галактик. Расстояние до центра этого скопления составляет около 15 Мпс.

Регулярные скопления галактик более компактны и симметричны. Их члены заметно концентрируются к центру. Примером сферического скопления является скопление галактик в созвездии Волос Вероники, содержащее очень много эллиптических и линзовидных галактик. В нем содержатся около 30 000 галактик ярче 19 фотографической звездной величины. Расстояние до центра скопления составляет около 100 Мпс.



Со многими скоплениями, содержащими большое число галактик, связаны мощные протяженные источники рентгеновского излучения.

Есть основания полагать, что скопления галактик в свою очередь также распределены неравномерно. Согласно некоторым исследованиям, окружающие нас скопления и группы галактик образуют грандиозную систему - Сверхгалактику или Местное сверхскопление. Отдельные галактики при этом, по-видимому, концентрируются к некоторой плоскости, которую можно называть экваториальной плоскостью Сверхгалактики. Только что рассмотренное скопление галактик в созвездии Девы находится в центре такой гигантской системы. Скопление в Волосах Вероники является центром другого, соседнего сверхскопления.

Наблюдаемую часть Вселенной обычно называют Метагалактикой . Метагалактику составляют различные наблюдаемые структурные элементы: галактики, звезды, сверхновые, квазары и т.д. Размеры Метагалактики ограничены нашими возможностями наблюдений и в настоящее время приняты равными 10 26 м. Ясно, что понятие размеров Вселенной весьма условно: реальная Вселенная безгранична и нигде не кончается.

Многолетние исследования Метагалактики выявили два основных свойства, составляющие основной космологический постулат :

1. Метагалактика однородна и изотропна в больших объемах.

2. Метагалактика не стационарна.

Loading...Loading...