Слои земли по порядку. Из каких слоёв земли состоит наша земля? (нужны все слои, от ядра до конца). Земная кора и ее типы

Содержание статьи

ЗЕМЛИ СТРОЕНИЕ. Планета Земля состоит из тонкой твердой оболочки (кора толщиной 10–100 км), окруженной мощной водной гидросферой и плотной атмосферой . Недра Земли разделяются на три основных области: кору, мантию и ядро. Кора Земли представляет собою верхнюю часть твердой оболочки Земли толщиной от одного (под океанами) до нескольких десятков км. (под материками). Она состоит из осадочных слоев и хорошо известных минералов и горных пород. Более глубокие ее слои состоят из различных базальтов. Под корой находится твердый силикатный слой (предположительно из оливина), называемый мантией, толщиной 1–3 тыс. км, он окружает жидкую часть ядра, центральная часть которого диаметром около 2000 км твердая.

Атмосфера.

Земля, как и большинство других планет, окружена газовой оболочкой – атмосферой, которая состоит, в основном, из азота и кислорода. Ни одна другая планета не обладает атмосферой с таким химическим составом, как у Земли. Считается, что он возник в результате длительной химической и биологической эволюции. Атмосфера Земли делится на несколько областей в соответствии с изменением температуры, химического состава, физического состояния и степенью ионизации молекул и атомов воздуха. Плотные, пригодные для дыхания слои земной атмосферы имеют толщину не более 4–5 км. Выше атмосфера очень разрежена: ее плотность уменьшается примерно в три раза на каждые 8 км подъема. При этом температура воздуха сначала в тропосфере уменьшается до 220 К, однако на высоте в несколько десятков километров в стратосфере начинается ее рост до 270 К на высоте около 50 км, где проходит граница со следующим слоем атмосферы – мезосфера (средняя атмосфера). Рост температуры в верхней стратосфере происходит из-за нагревающего действия поглощаемого здесь ультрафиолетового и рентгеновского солнечного излучения, не проникающего в нижние слои атмосферы. В мезосфере температура снова убывает почти до 180 К, после чего выше 180 км в термосфере начинается ее очень сильный рост до значений более 1000 К. На высотах свыше 1000 км термосфера переходит в экзосферу, из которой происходит диссипация атмосферных газов в межпланетное космическое пространство. С повышением температуры связана ионизация атмосферных газов – возникновение электропроводящих слоев, которые в целом принято называть земной ионосферой.

Гидросфера.

Важной особенностью Земли является большое количество воды, постоянно находящейся в разных пропорциях во всех трех агрегатных состояниях – газообразном (водяные пары в атмосфере), жидком (реки, озера, моря, океаны и, в меньшей степени, атмосфера) и твердом (снег и лед, главным образом в ледниках ). Благодаря водному балансу общее количество воды на Земле должно сохраняться. Мировой океан занимает большую часть поверхности Земли (361,1 млн. км 2 или 70,8% площади поверхности Земли), его средняя глубина составляет около 3800 м, наибольшая – 11 022 м (Марианская впадина в Тихом океане), объем воды 1370 млн. км 3 , средняя соленость 35 г/л. Площадь современных ледников около 11% поверхность суши, которая составляет 149,1 млн км 2 (» 29,2%). Суша поднимается над уровнем Мирового океана в среднем на 875 м (наибольшая высота 8848 м – вершина Джомолунгма в Гималаях). Считается, что существование осадочных пород, возраст которых (по данным радиоизотопного анализа) превосходит 3,7 млрд. лет, служит доказательством существования на Земле обширных водоемов уже в ту далекую эпоху, когда, предположительно, появились первые живые организмы.


Мировой океан.

Мировой океан условно делится на четыре океана. Самый крупный и глубокий из них Тихий океан . По площади 178,62 млн. км 2 он занимает половину всей водной поверхности Земли. Средняя его глубина (3980 м) больше средней глубины Мирового океана (3700 м). В его пределах находится и самая глубоководная впадина – Марианская (11 022 м). В Тихом океане сосредоточено более половины объема воды Мирового океана (710,4 из 1341 млн. км 3). Второй по размерам Атлантический океан . Его площадь 91,6 млн. км 2 , средняя глубина 3600 м, наибольшая 8742 м (в районе Пуэрто-Рико), объем 329,7 млн. км 3 . Далее по размерам идет Индийский океан , который занимает площадь 76,2 млн. км 2 , среднюю глубину 3710 м, наибольшую 7729 м (возле Зондских островов), объем воды 282,6 млн. км 3 . Самый маленький и самый холодный Северный Ледовитый океан , с площадью всего 14,8 млн. км 2 . Он занимает 4% Мирового океана), обладает средней глубиной 1220 м (наибольшая 5527 м), объемом воды 18,1 млн. км 3 . Иногда выделяют т.н. Южный океан (условное название южных частей Атлантического, Индийского и Тихого океанов, прилегающих к Антарктическому материку). В составе океанов выделяются моря. Для жизни Земли огромную роль играет постоянно происходящий в ней круговорот воды (влагооборот). Это непрерывный замкнутый процесс перемещения воды в атмосфере, гидросфере и земной коре, состоящий из испарения, переноса водяного пара в атмосфере, конденсации пара, выпадения осадков и стока вод в Мировой океан. В этом едином процессе происходит непрерывный переход воды с земной поверхности в атмосферу и обратно.

Гольфстрим (англ. Gulf Stream) – система теплых течений в северной части Атлантического океана, простирающаяся на 10 тыс. км от берегов полуострова Флорида до островов Шпицбергена и Новой Земли. Скорость от 6–10 км/ч во Флоридском проливе до 3–4 км/ч в районе Б. Ньюфаундлендской банки, температура поверхностных вод соответственно от 24–28 до 10–20° С. Средний расход воды во Флоридском проливе 25 млн. м 3 /с (в 20 раз превышает суммарный расход воды всех рек земного шара). Гольфстрим переходит в Северо-Атлантическое течение (40° з.д.), которое под влиянием западных и юго-западных ветров следует к берегам Скандинавского полуострова, оказывая влияние на климат Европы.

Эльниньо – теплое тихоокеанское экваториальное течение, возникающее раз в несколько лет. За последние 20 лет отмечены пять активных циклов Эльниньо: 1982–1983, 1986–1987, 1991–1993, 1994–1995 и 1997–1998, т.е. в среднем через каждые 3–4 года.

В годы, когда Эльниньо отсутствует, вдоль всего тихоокеанского побережья Южной Америки из-за прибрежного подъема холодных глубинных вод, вызванного поверхностным холодным Перуанским течением, температура поверхности океана колеблется в узких сезонных пределах – от 15° С до 19° С. В период Эльниньо температура поверхности океана в прибрежной зоне повышается на 6–10° С. При Эльниньо в районе экватора это течение прогревается сильнее, чем обычно. Поэтому пассатные ветры ослабевают либо совсем не дуют. Нагретая вода, растекаясь в стороны, идет обратно к американскому берегу. Возникает аномальная зона конвекции, и на Центральную и Южную Америку обрушиваются дожди и ураганы. Глобальное потепление уже в скором будущем может привести к катастрофическим последствиям. Вымирают целые виды животных и растений, которые не успевают приспособиться к изменению климата. Из-за таяния полярных льдов уровень океана может повыситься на целый метр, и островов станет меньше. За столетие потепление может достигнуть 8 градусов.

Аномальные погодные условия на Земном шаре в годы Эльниньо. В тропиках происходит увеличение осадков над районами к востоку от центральной части Тихого океана и уменьшение на севере Австралии, в Индонезии и на Филиппинах. В декабре-феврале осадки больше нормы наблюдаются на побережье Эквадора, на северо-западе Перу, над южной Бразилией, центральной Аргентиной и над экваториальной, восточной частью Африки, а в течении июня-августа – на западе США и над центральной частью Чили.

Появления Эльниньо ответственны также за крупномасштабные аномалии температуры воздуха во всем мире. В эти годы бывают выдающиеся повышения температуры. Более теплые, чем нормальные, условия в декабре-феврале были над юго-восточной Азией, над Приморьем, Японией, Японским морем, над юго-восточной Африкой и Бразилией, на юго-востоке Австралии. Температуры выше нормы также отмечаются в июне-августе на западном побережье Южной Америки и над юго-восточной Бразилией. Более холодные зимы (декабрь-февраль) бывают на юго-западном побережье США.

Ланиньо . Ланиньо – в противоположность Эльниньо, проявляется как понижение поверхностной температуры воды на востоке тропической зоны Тихого океана. Такие явления отмечались в 1984–1985, 1988–1989 и 1995–1996. В этот период непривычно холодная погода устанавливается на востоке Тихого океана. Ветры сдвигают зону теплой воды и «язык» холодных вод растягивается на 5000 км, в районе Эквадора – островов Самоа, именно в том месте, где при Эльниньо должен быть пояс теплых вод. В этот период в Индокитае, Индии и Австралии наблюдаются мощные муссонные дожди. Страны Карибского бассейна и США при этом страдают от засух и смерчей.

Аномальные погодные условия на Земном шаре в годы Ланиньо . В течение периодов Ланиньо осадки усиливаются над западной экваториальной частью Тихого океана, Индонезией и Филиппинами и почти полностью отсутствуют в восточной части океана. Преимущественно осадки выпадают в декабре-феврале на севере Южной Америки и над Южной Африкой, и в июне-августе над юго-восточной Австралией. Более засушливые условия наблюдаются над побережьем Эквадора, на северо-западе Перу и над экваториальной частью восточной Африки в течение декабря-февраля, а также над южной Бразилией и центральной Аргентиной в июне-августе. Во всем мире отмечаются крупномасштабные отклонения от нормы. Наблюдается наибольшее количество областей с аномально прохладными условиями, например, холодные зимы в Японии и в Приморье, над Южной Аляской и западной, центральной Канадой, а также прохладные летние сезоны над юго-восточной Африкой, над Индией и юго-восточной Азией. Более теплые зимы наступают на юго-западе США.

Ланиньо, как и Эльниньо, чаще всего возникают с декабря по март. Различие в том, что Эльниньо возникает в среднем один раз в три-четыре года, а Ланиньо – раз в шесть-семь лет. Оба явления несут с собой повышенное количество ураганов, но во время Ланиньо их бывает в три-четыре раза больше, чем при Эльниньо.

Согласно последним наблюдениям, достоверность наступления Эльниньо или Ланиньо, можно определить, если:

1. В районе экватора, в восточной части Тихого океана, образуется пятно более теплой воды, чем обычно, в случае Эльниньо и более холодной – в случае Ланиньо.

2. Если атмосферное давление в порте Дарвин (Австралия) имеет тенденцию к понижению, а на острове Таити – к повышению, то ожидается Эльниньо. В противном случае будет Ланиньо.

Эльниньо и Ланиньо – наиболее ярко выраженные проявления глобальной годичной изменчивости климата. Они представляют собой крупномасштабные изменения температур океана , осадков, атмосферной циркуляции, вертикальных движений воздуха над тропической частью Тихого океана.


Ледники.

Мантия.

Между корой и ядром Земли, расположена силикатная (в основном оливин) оболочка, или мантия Земли, в которой вещество находится в особом пластическом, аморфном состоянии, близком к расплавленному (верхняя мантия толщиной ок. 700 км). Внутренняя мантия толщиной около 2000 км находится в твердом кристаллическом состоянии. Мантия занимает около 83% объема всей Земли и составляет до 67% ее массы. Верхняя граница мантии проходит по границе поверхности Мохоровичича на различных глубинах – от 5–10 до 70 км, а нижняя – на границе с ядром на глубине около 2900 км.

Ядро.

По мере приближения к центру плотность вещества увеличивается, повышается температура. Центральная часть земного шара примерно до половины радиуса представляет собой плотное железоникелевое ядро с температурой в 4–5 тыс. кельвинов, внешняя часть которого расплавлена и переходит в мантию. Предполагается, что в самом центре Земли температура выше, чем в атмосфере Солнца. Это означает, что у Земли есть внутренние источники тепла.

Относительно тонкая земная кора (причем под океанами более тонкая и более плотная, чем под материками) составляет внешний покров, который отделен от нижележащей мантии границей Мохоровичича. Самый плотный материал слагает ядро Земли, по-видимому, состоящее из металлов. Кора, внутренняя мантия и внутреннее ядро находятся в твердом состоянии, а внешнее ядро в жидком.

Эдвард Кононович

Методы изучения внутреннего строения и состава Земли

Методы изучения внутреннего строения и состава Земли можно разделить на две основные группы: геологические методы и геофизические методы. Геологические методы базируются на результатах непосредственного изучения толщ горных пород в обнажениях, горных выработках (шахтах, штольнях и пр.) и скважинах. При этом в распоряжении исследователей имеется весь арсенал методов исследования строения и состава, что определяет высокую степенью детальности получаемых результатов. Вместе с тем, возможности этих методов при изучении глубин планеты весьма ограничены – самая глубокая в мире скважина имеет глубину лишь -12262 м (Кольская сверхглубокая в России), ещё меньшие глубины достигнуты при бурении океанического дна (около -1500 м, бурение с борта американского исследовательского судна «Гломар Челленджер»). Таким образом, непосредственному изучению доступны глубины, не превышающие 0,19% радиуса планеты.

Сведения о глубинном строении базируются на анализе косвенных данных, полученных геофизическими методами , главным образом закономерностей изменения с глубиной различных физических параметров (электропроводности, механической добротности и т.д.), измеряемых при геофизических исследованиях. В основу разработки моделей внутреннего строения Земли положены в первую очередь результаты сейсмических исследований, опирающиеся на данные о закономерностях распространения сейсмических волн. В очагах землетрясений и мощных взрывов возникают сейсмические волны – упругие колебания. Эти волны разделяются на объёмные – распространяющиеся в недрах планеты и «просвечивающие» их подобно рентгеновским лучам, и поверхностные – распространяющиеся параллельно поверхности и «зондирующие» верхние слои планеты на глубину десятки – сотни километров.
Объемные волны, в свою очередь, разделяются на два вида – продольные и поперечные. Продольные волны, имеющие большую скорость распространения, первыми фиксируются сейсмоприёмниками, их называют первичными или Р-волнами (от англ. рrimary - первичные ), более «медленные» поперечные волны называют S-волны (от англ. secondary - вторичные ). Поперечные волны, как известно, обладают важной особенностью – они распространяются только в твёрдой среде.

На границах сред с разными свойствами происходит преломление волн, а на границах резких изменений свойств, помимо преломлённых, возникают отраженные и обменные волны. Поперечные волны могут иметь смещение, перпендикулярное плоскости падения (SH-волны) или смещение, лежащее в плоскости падения (SV-волны). При переходе границы сред с разными свойствами волны SH испытывают обычное преломление, а волны SV, кроме преломлённой и отражённой SV-волн, возбуждают P-волны. Так возникает сложная система сейсмических волн, «просвечивающих» недра планеты.

Анализируя закономерности распространения волн можно выявить неоднородности в недрах планеты - если на некоторой глубине фиксируется скачкообразное изменение скоростей распространения сейсмических волн, их преломление и отражение, можно заключить, что на этой глубине проходит граница внутренних оболочек Земли, различающихся по своим физическим свойствам.

Изучение путей и скорости распространения в недрах Земли сейсмических волн позволили разработать сейсмическую модель её внутреннего строения.

Сейсмические волны, распространяясь от очага землетрясения в глубь Земли, испытывают наиболее значительные скачкообразные изменения скорости, преломляются и отражаются на сейсмических разделах, расположенных на глубинах 33 км и 2900 км от поверхности (см. рис.). Эти резкие сейсмические границы позволяют разделить недра планеты на 3 главные внутренние геосферы – земную кору, мантию и ядро.

Земная кора от мантии отделяется резкой сейсмической границей, на которой скачкообразно возрастает скорость и продольных, и поперечных волн. Так скорость поперечных волн резко возрастает с 6,7-7,6 км/с в нижней части коры до 7,9-8,2 км/с в мантии. Эта граница была открыта в 1909 г. югославским сейсмологом Мохоровичичем и впоследствии была названа границей Мохоровичича (часто кратко называемой границей Мохо, или границей М). Средняя глубина границы составляет 33 км (нужно заметить, что это весьма приблизительное значение в силу разной мощности в разных геологических структурах); при этом под континентами глубина раздела Мохоровичича может достигать 75-80 км (что фиксируется под молодыми горными сооружениями – Андами, Памиром), под океанами она понижается, достигая минимальной мощности 3-4 км.

Ещё более резкая сейсмическая граница, разделяющая мантию и ядро, фиксируется на глубине 2900 км . На этом сейсмическом разделе скорость Р-волн скачкообразно падает с 13,6 км/с в основании мантии до 8,1 км/с в ядре; S-волны – с 7,3 км/с до 0. Исчезновение поперечных волн указывает, что внешняя часть ядра обладает свойствами жидкости. Сейсмическая граница, разделяющая ядро и мантию, была открыта в 1914 г. немецким сейсмологом Гутенбергом, и её часто называют границей Гутенберга , хотя это название и не является официальным.

Резкие изменения скорости и характера прохождения волн фиксируются на глубинах 670 км и 5150 км. Граница 670 км разделяет мантию на верхнюю мантию (33-670 км) и нижнюю мантию (670-2900 км). Граница 5150 км разделяет ядро на внешнее жидкое (2900-5150 км) и внутреннее твёрдое (5150-6371 км).

Существенные изменения отмечаются и на сейсмическом разделе 410 км , делящим верхнюю мантию на два слоя.

Полученные данные о глобальных сейсмических границах дают основание для рассмотрения современной сейсмической модели глубинного строения Земли.

Внешней оболочкой твёрдой Земли является земная кора , ограниченная границей Мохоровичича. Эта относительно маломощная оболочка, толщина которой составляет от 4-5 км под океанами до 75-80 км под континентальными горными сооружениями. В составе знмной коры отчетливо выделяется верхний осадочный слой , состоящий из неметаморфизованных осадочных пород, среди которых могут присутствовать вулканиты, и постилающая его консолидированная , или кристаллическая , кора , образованная метаморфизованными и магматическими интрузивными породами.Существуют два главных типа земной коры – континентальная и океанская, принципиально различающиеся по строению, составу, происхождению и возрасту.

Континентальная кора залегает под континентами и их подводными окраинами, имеет мощность от 35-45 км до 55-80 км, в её разрезе выделяются 3 слоя. Верхний слой, как правило, сложен осадочными породами, включающими небольшое количество слабометаморфизованных и магматических пород. Этот слой называется осадочным. Геофизически он характеризуются низкой скоростью Р-волн в диапазоне 2-5 км/с. Средняя мощность осадочного слоя около 2,5 км.
Ниже располагается верхняя кора (гранито-гнейсовый или «гранитный» слой), сложенный магматическими и метаморфическими породами богатыми кремнезёмом (в среднем соответствующими по химическому составу гранодиориту). Скорость прохождения Р-волн в данном слое составляет 5,9-6,5 км/с. В основании верхней коры выделяется сейсмический раздел Конрада, отражающий возрастание скорости сейсмических волн при переходе к нижней коре. Но этот раздел фиксируется не повсеместно: в континентальной коре часто фиксируется постепенное возрастание скоростей волн с глубиной.
Нижняя кора (гранулито-базитовый слой) отличается более высокой скоростью волн (6,7-7,5 км/с для Р-волн), что обусловлено изменением состава пород при переходе от верхней мантии. Согласно наиболее приятой модели её состав соответствует гранулиту.

В формировании континентальной коры принимают участие породы различного геологического возраста, вплоть до самых древних возрастом около 4 млрд. лет.

Океанская кора имеет относительно небольшую мощность, в среднем 6-7 км. В её разрезе в самом общем виде можно выделить 2 слоя. Верхний слой – осадочный, характеризующийся малой мощностью (в среднем около 0,4 км) и низкой скоростью Р-волн (1,6-2,5 км/с). Нижний слой – «базальтовый» - сложенный основными магматическими породами (вверху – базальтами, ниже – основными и ультраосновными интрузивными породами). Скорость продольных волн в «базальтовом» слое нарастает от 3,4-6,2 км/с в базальтах до 7-7,7 км/с в наиболее низких горизонтах коры.

Возраст древнейших пород современной океанской коры около 160 млн. лет.


Мантия представляет собой наибольшую по объёму и массе внутреннюю оболочку Земли, ограниченную сверху границей Мохо, снизу – границей Гутенберга. В её составе выделяется верхняя мантия и нижняя мантия, разделённые границей 670 км.

Верхняя мания по геофизическим особенностям разделяется на два слоя. Верхний слой - подкоровая мантия - простирается от границы Мохо до глубин 50-80 км под океанами и 200-300 км под континентами и характеризуется плавным нарастанием скорости как продольных, так и поперечных сейсмических волн, что объясняется уплотнением пород за счёт литостатического давления вышележащих толщ. Ниже подкоровой мантии до глобальной поверхности раздела 410 км расположен слой пониженных скоростей. Как следует из названия слоя, скорости сейсмических волн в нем ниже, чем в подкоровой мантии. Более того, на некоторых участках выявляются линзы, вообще не пропускающие S-волны, это даёт основание констатировать, что вещество мантии на этих участках находится в частично расплавленном состоянии. Этот слой называют астеносферой (от греч. «asthenes» - слабый и «sphair» - сфера ); термин введён в 1914 американским геологом Дж. Барреллом, в англоязычной литературе часто обозначаемый LVZ – Low Velocity Zone . Таким образом, астеносфера – это слой в верхней мантии (расположенный на глубине около 100 км под океанами и около 200 км и более под континентами), выявляемый на основании снижения скорости прохождения сейсмических волн и обладающий пониженной прочностью и вязкостью. Поверхность астеносферы хорошо устанавливается и по резкому снижению удельного сопротивления (до значений около 100 Ом . м).

Наличие пластичного астеносферного слоя, отличающегося по механическим свойствам от твёрдых вышележащих слоёв, даёт основание для выделения литосферы - твердой оболочки Земли, включающей земную кору и подкоровую мантию, расположенную выше астеносферы. Мощность литосферы составляет от 50 до 300 км. Нужно отметить, что литосфера не является монолитной каменной оболочкой планеты, а разделена на отдельные плиты, постоянно движущиеся по пластичной астеносфере. К границам литосферных плит приурочены очаги землетрясений и современного вулканизма.

Глубже раздела 410 км в верхней мантии повсеместно распространяются и P-, и S-волны, а их скорость относительно монотонно нарастает с глубиной.

В нижней мантии , отделённой резкой глобальной границей 670 км, скорость Р- и S-волн монотонно, без скачкообразных изменений, нарастает соответственно до 13,6 и 7,3 км/с вплоть до раздела Гутенберга.

Во внешнем ядре скорость Р-волн резко снижается до 8 км/с, а S-волны полностью исчезают. Исчезновение поперечных волн даёт основание предполагать, что внешнее ядро Земли находится в жидком состоянии. Ниже раздела 5150 км находится внутреннее ядро, в котором возрастает скорость Р-волн, и вновь начинают распространяться S-волны, что указывает на его твёрдое состояние.

Фундаментальный вывод из описанной выше скоростной модели Земли состоит в том, что наша планета состоит из серии концентрических оболочек, представляющих железистое ядро, силикатную мантию и алюмосиликатную кору.

Геофизическая характеристика Земли

Распределение массы между внутренними геосферами

Основная часть массы Земли (около 68%) приходится на ее относительно лёгкую, но большую по объёму мантию, при этом примерно 50% приходится на нижнюю мантию и около 18% – на верхнюю. Оставшиеся 32% общей массы Земли приходятся в основном на ядро, причем его жидкая внешняя часть (29% общей массы Земли) гораздо тяжелее, чем внутренняя твердая (около 2%). На кору остается лишь менее 1% общей массы планеты.

Плотность

Плотность оболочек закономерно возрастает к центру Земли (см. рис). Средняя плотность коры составляет 2,67 г/см 3 ; на границе Мохо она скачкообразно возрастает с 2,9-3,0 до 3,1-3,5 г/см 3 . В мантии плотность постепенно возрастает за счет сжатия силикатного вещества и фазовых переходов (перестройкой кристаллической структуры вещества в ходе «приспособления» к возрастающему давлению) от 3,3 г/см 3 в подкоровой части до 5,5 г/см 3 в низах нижней мантии. На границе Гутенберга (2900 км) плотность скачкообразно увеличивается почти вдвое – до 10 г/см 3 во внешнем ядре. Еще один скачок плотности – от 11,4 до 13,8 г/см 3 - происходит на границе внутреннего и внешнего ядра (5150 км). Эти два резких плотностных скачка имеют различную природу: на границе мантия/ядро происходит изменение химического состава вещества (переход от силикатной мантии к железному ядру), а скачок на границе 5150 км связан с изменением агрегатного состояния (переход от жидкого внешнего ядра к твердому внутреннему). В центре Земли плотность вещества достигает 14,3 г/см 3 .


Давление

Давление в недрах Земли рассчитывается на основании ее плотностной модели. Увеличение давления по мере удаления от поверхности обуславливается несколькими причинами:

    сжатием за счет веса вышележащих оболочек (литостатическое давление);

    фазовыми переходами в однородных по химическому составу оболочках (в частности, в мантии);

    различием в химическом составе оболочек (коры и мантии, мантии и ядра).

У подошвы континентальной коры давление составляет около 1 ГПа (точнее 0,9*10 9 Па). В мантии Земли давление постепенно растет, на границе Гутенберга оно достигает 135 ГПа. Во внешнем ядре градиент роста давления увеличивается, а во внутреннем ядре, наоборот, уменьшается. Расчетные величины давления на границе между внутренним и внешним ядрами и вблизи центра Земли составляют соответственно 340 и 360 ГПа.

Температура. Источники тепловой энергии

Протекающие на поверхности и в недрах планеты геологические процессы в первую очередь обусловлены тепловой энергией. Источники энергии подразделяются на две группы: эндогенные (или внутренние источники), связанные с генерацией тепла в недрах планеты, и экзогенные (или внешние по отношению к планете). Интенсивность поступления тепловой энергии из недр к поверхности отражается в величине геотермического градиента. Геотермический градиент – приращение температуры с глубиной, выраженной в 0 С/км. «Обратной» характеристикой является геотермическая ступень – глубина в метрах, при погружении на которую температура повысится на 1 0 С. Средняя величина геотермического градиента в верхней части коры составляет 30 0 С/км и колеблется от 200 0 С/км в областях современного активного магматизма до 5 0 С/км в областях со спокойным тектоническим режимом. С глубиной величина геотермического градиента существенно уменьшается, составляя в литосфере, в среднем около 10 0 С/км, а в мантии – менее 1 0 С/км. Причина этого кроется в распределении источников тепловой энергии и характере теплопереноса.


Источниками эндогенной энергии являются следующие.
1. Энергия глубинной гравитационной дифференциации , т.е. выделение тепла при перераспределении вещества по плотности при его химических и фазовых превращениях. Основным фактором таких превращений служит давление. В качестве главного уровня выделения этой энергии рассматривается граница ядро – мантия.
2. Радиогенное тепло , возникающее при распаде радиоактивных изотопов. Согласно некоторым расчётам, этот источник определяет около 25% теплового потока, излучаемого Землёй. Однако необходимо принимать во внимание, что повышенные содержания главных долгоживущих радиоактивных изотопов – урана, тория и калия отмечаются только в верхней части континентальной коры (зона изотопного обогащения). Например, концентрация урана в гранитах достигает 3,5 10 –4 %, в осадочных породах – 3,2 10 –4 %, в то время как в океанической коре она ничтожно мала: около 1,66 10 –7 %. Таким образом, радиогенное тепло является дополнительным источником тепла в верхней части континентальной коры, что и определяет высокую величину геотермического градиента в этой области планеты.
3. Остаточное тепло , сохранившееся в недрах со времени формирования планеты.
4. Твёрдые приливы , обусловленные притяжение Луны. Переход кинетической приливной энергии в тепло происходит вследствие внутреннего трения в толщах горных пород. Доля этого источника в общем тепловом балансе невелика – около 1-2 %.

В литосфере преобладает кондуктивный (молекулярный) механизм теплопереноса, в подлитосферной мантии Земли происходит переход к преимущественно конвективному механизму теплопереноса.

Расчёты температур в недрах планеты дают следующие значения: в литосфере на глубине около 100 км температура составляет около 1300 0 С, на глубине 410 км – 1500 0 С, на глубине 670 км – 1800 0С, на границе ядра и мантии – 2500 0 С, на глубине 5150 км – 3300 0 С, в центе Земли – 3400 0 С. При этом в расчёт принимался только главный (и наиболее вероятный для глубинных зон) источник тепла – энергия глубинной гравитационной дифференциации.

Эндогенное тепло определяет протекание глобальных геоднинамических процессов. в том числе перемещение литосферных плит

На поверхности планеты важнейшую роль имеет экзогенный источник тепла – солнечное излучение. Ниже поверхности влияние солнечного тепла резко снижается. Уже на небольшой глубине (до 20-30 м) располагается пояс постоянных температур – область глубин, где температура остаётся постоянной и равна среднегодовой температуре района. Ниже пояса постоянных температур тепло связано с эндогенными источниками.

Магнетизм Земли

Земля представляет собой гигантский магнит с магнитным силовым полем и магнитными полюсами, которые располагаются поблизости от географических, но не совпадают с ними. Поэтому в показаниях магнитной стрелки компаса различают магнитное склонение и магнитное наклонение.

Магнитное склонение – это угол между направлением магнитной стрелки компаса и географическим меридианом в данной точке. Этот угол будет наибольшим на полюсах (до 90 0) и наименьшим на экваторе (7-8 0).

Магнитное наклонение – угол, образуемый наклоном магнитной стрелки к горизонту. В приближении к магнитному полюсу стрелка компаса займёт вертикальное положение.

Предполагается, что возникновение магнитного поля обусловлено системами электрических токов, возникающих при вращении Земли, в связи с конвективными движениями в жидком внешнем ядре. Суммарное магнитное поле складывается из значений главного поля Земли и поля, обусловленного ферромагнитными минералами в горных породах земной коры. Магнитные свойства характерны для минералов – ферромагнетиков, таких как магнетит (FeFe 2 O 4), гематит (Fe 2 O 3), ильменит (FeTiO 2), пирротин (Fe 1-2 S) и др., которые являются полезными ископаемыми и устанавливаются по магнитным аномалиям. Для этих минералов характерно явление остаточной намагниченности, которая наследует ориентировку магнитного поля Земли, существовавшего во время образования этих минералов. Реконструкция места положения магнитных полюсов Земли в разные геологические эпохи свидетельствует о том, что магнитное поле периодически испытывало инверсию - изменение, при котором магнитные полюсы менялись местами. Процесс изменения магнтиного знака геомагнитного поля длится от нескольких сотен до несмкольких тысяч лет и начинается с интенсивного понижения напряженности главного магнитного поля Земли практически до нуля, затем устанавливается обратная полярность и через некоторое время следует быстрое восстановление напряженности, но уже противоположного знака. Северный полюс занимал место южного и, наоборот, с примерной частотой 5 раз в 1 млн. лет. Современная ориентация магнитного поля установилась около 800 тыс. лет назад.

Изучение внутреннего строения планет, в том числе нашей Земли — чрезвычайно сложная задача. Мы не можем физически «пробурить» земную кору вплоть до ядра планеты, поэтому все знания полученные нами на данный момент — это знания полученные «на ощупь», причем самым буквальным образом.

Как работает сейсморазведка на примере разведки нефтяных месторождений. «Прозваниваем» землю и «слушаем», что принесет нам отраженный сигнал

Дело в том, что наиболее простой и надежный способ узнать что же находится под поверхностью планеты и входит в состав её коры — это изучении скорости распространения сейсмических волн в недрах планеты.

Известно, что скорость продольных сейсмических волн возрастает в более плотных средах и напротив, уменьшается в рыхлых грунтах. Соответственно, зная параметры разных типов породы и имея расчетные данные о давлении и т.п., «слушая» полученный ответ, можно понять через какие слои земной коры прошел сейсмический сигнал и как глубоко они находятся под поверхностью.

Изучение строения земной коры с помощью сейсмоволн

Сейсмические колебания могут быть вызваны источни­ками двух видов: естественными и искусственными . Естествен­ными источниками колебаний являются землетрясения, волны которых несут необходимую информацию о плотности по­род, сквозь которые они проникают.

Арсенал искусственных источников колебаний более обширен, но в первую очередь ис­кусственные колебания вызываются обыкновенным взрывом, однако есть и более «тонкие» способы работы — генераторы направленных импульсов, сейсмовибраторов и т.п.

Проведением взрывных работ и изучением скоростей сейсмических волн занимается сейсморазведка - одна из важнейших отраслей современной геофизики.

Что же дало изучение сейсмических волн внутри Земли? Анализ их распространения выявил несколько скачков изменения ско­рости при прохождении через недра планеты.

Земная кора

Первый скачок, при котором скорости возрастают с 6,7 до 8,1 км/с, как счи­тают геологи, регистрирует подошву земной коры . Эта по­верхность располагается в разных местах планеты на различных уровнях, от 5 до 75 км. Граница земной коры и нижележащей оболочки - мантии, получила название «поверхности Мохоровичича» , по имени впервые установившего ее югославского ученого А. Мохо­ровичича.

Мантия

Мантия залегает на глубинах до 2 900 км и делится на две части: верхнюю и нижнюю. Граница между верхней и нижней мантией также фиксируется по скачку скорости рас­пространения продольных сейсмических волн (11,5 км/с) и располагается на глубинах от 400 до 900 км.

Верхняя ман­тия имеет сложное строение. В ее верхней части имеется слой расположенный на глубинах 100-200 км, где проис­ходит затухание поперечных сейсмических волн на 0,2- 0,3 км/с, а скорости продольных волн, по существу, не ме­няются. Этот слой назван волноводом . Его толщина обычно равняется 200-300 км.

Часть верхней мантии и кора, залегаю­щие над волноводом, называются литосферой , а сам слой пониженных скоростей - астеносферой .

Таким образом, литосфера представляет собой жесткую твердую оболочку, подстилаемую пластичной астеносфе­рой. Предполагается, что в астеносфере возникают процес­сы, вызывающие движение литосферы.

Внутреннее строение нашей планеты

Ядро Земли

В подошве мантии происходит резкое уменьшение ско­рости распространения продольных волн с 13,9 до 7,6 км/с. На этом уровне лежит граница между мантией и ядром Зем­ли , глубже которой поперечные сейсмические волны уже не распространяются.

Радиус ядра достигает 3500 км, его объем: 16% объема планеты, а масса: 31% массы Земли.

Многие ученые считают, что ядро находится в расплавленном состоя­нии. Его внешняя часть характеризуется резко пониженными значениями скоростей продольных волн, во внутренней ча­сти (радиусом в 1200 км) скорости сейсмических волн вновь возрастают до 11 км/с. Плотность пород ядра равна 11 г/см 3 , и она обуславливается наличием тяжелых элементов. Таким тяжелым элементом может быть железо. Вероятнее всего, железо является составной частью ядра, так как ядро чисто железного или железо-никелевого состава должно иметь плотность, на 8-15% превышающую существующую плот­ность ядра. Поэтому к железу в ядре, по-видимому, при­соединены кислород, сера, углерод и водород.

Геохимический метод изучения строения пла­нет

Имеется еще один путь изучения глубинного строения пла­нет - геохимический способ . Выделение различных оболочек Земли и других планет земной группы по физическим параметрам находит достаточно четкое геохимическое подтверждение, основанное на теории гетерогенной аккреции, согласно кото­рой состав ядер планет и их внешних оболочек в основной своей части является исходно различным и зависит от само­го раннего этапа их развития.

В результате этого процесса в ядре концентрировались наиболее тяжелые (железо-никелевые ) компоненты, а во внешних оболочках - более легкие сили­катные (хондритовые ), обогащенные в верхней мантии лету­чими веществами и водой.

Важнейшей особенностью планет земной группы ( , Земля, ) явля­ется то, что их внешняя оболочка, так называемая кора , со­стоит из двух типов вещества: «материкового » - полевошпа­тового и «океанического » - базальтового.

Материковая (континентальная) кора Земли

Материковая (континентальная) кора Земли сложена гранитами или породами, близкими им по составу, т. е. породами с большим количеством полевых шпатов. Образование «гра­нитного» слоя Земли обусловлено преобразованием более древних осадков в процессе гранитизации.

Гранитный слой надо рассматривать как специ­фическую оболочку коры Земли - единственной планеты, на которой получили широкое развитие процессы дифферен­циации вещества с участием воды и имеющей гидросферу, кислородную атмосферу и биосферу. На Луне и, вероятно, на планетах земной группы континентальная кора слагается габбро-анортозитами - породами, состоящими из большого количества полевого шпата, правда, несколько другого соста­ва, чем в гранитах.

Этими породами сложены древнейшие (4,0-4,5 млрд. лет) поверхности планет.

Океаническая (базальтовая) кора Земли

Океаническая (базальтовая) кора Земли образована в ре­зультате растяжения и связана с зонами глубинных разло­мов, обусловивших проникновение к базальтовым очагам верхней мантии. Базальтовый вулканизм накладывается на ра­нее сформировавшуюся континентальную кору и является от­носительно более молодым геологическим образованием.

Проявления базаль­тового вулканизма на всех планетах земного типа, по-видимому, аналогичны. Широкое развитие базальтовых «морей» на Луне, Марсе, Меркурии, очевидно, связано с растяжени­ем и образованием вследствие этого процесса зон проницае­мости, по которым базальтовые расплавы мантии устрем­лялись к поверхности. Этот механизм проявления базальто­вого вулканизма является более или менее сходным для всех планет земной группы.

Спутница Земли - Луна также имеет оболочечное строе­ние, в целом повторяющее земное, хотя и имеющее разительно отличие по составу.

Тепловой поток Земли. Горячее всего в районе разломов земной коры, а холоднее — в районах древних материковых плит

Метод измерения теплового потока для изучения строения пла­нет

Еще один путь изучения глубинного строения Земли - это изучение ее теплового потока. Известно, что Земля, го­рячая изнутри, отдает свое тепло. О нагреве глубоких гори­зонтов свидетельствуют извержения вулканов, гейзеры, го­рячие источники. Тепло - главный энергетический источник Земли.

Прирост температуры с углублением от поверхно­сти Земли в среднем составляет около 15° С на 1 км. Это значит, что на границе литосферы и астеносферы, располо­женной примерно на глубине 100 км, температура должна быть близкой к 1500° С. Установлено, что при такой темпера­туре происходит плавление базальтов. Это означает, что астеносферная оболочка может служить источником магмы ба­зальтового состава.

С глубиной изменение температуры про­исходит по более сложному закону и находится в зависи­мости от изменения давления. Согласно расчетным данным, на глубине 400 км температура не превышает 1600° С и на границе ядра и мантии оценивается в 2500-5000° С.

Установлено, что выделение тепла происходит постоян­но по всей поверхности планеты. Тепло - важнейший физи­ческий параметр. От степени нагрева горных пород зависят некоторые их свойства: вязкость, электропроводность, магнитность, фазовое состояние. Поэтому по термическому состоянию можно судить о глубинном строении Земли.

Изме­рение температуры нашей планеты на большой глубине - задача технически сложная, так как измерениям доступны лишь первые километры земной коры. Однако внутренняя температура Земли может быть изучена косвенным путем при измерениях теплового потока.

Несмотря на то, что основным источ­ником тепла на Земле является Солнце, суммарная мощность теплового потока нашей планеты превышает в 30 раз мощность всех электростанций Земли.

Измерения показали, что средний тепловой поток на кон­тинентах и в океанах одинаков. Этот результат объясняется тем, что в океанах большая часть тепла (до 90%) поступает из мантии, где интенсивнее происходит процесс переноса вещества движущимися потоками - конвекцией .

Конвек­ция - процесс, при котором разогретая жидкость расширяет­ся, становясь легче, и поднимается, а более холодные слои опускаются. Поскольку мантийное вещество ближе по сво­ему состоянию к твердому телу, конвекция в нем протека­ет в особых условиях, при невысоких скоростях течения ма­териала.

Какова же тепловая история нашей планеты? Ее пер­воначальный разогрев, вероятно, связан с теплом, образован­ным при соударении частиц и их уплотнении в собственном поле силы тяжести. Затем тепло явилось результатом радио­активного распада. Под воздействием тепла возникла слои­стая структура Земли и планет земной группы.

Радиоактив­ное тепло в Земле выделяется и сейчас. Существует гипоте­за, согласно которой на границе расплавленного ядра Земли продолжаются и поныне процессы расщепления вещества с выделением огромного количества тепловой энергии, разо­гревающей мантию.

Земля, так же, как и многие другие планеты, имеет слоистое внутреннее строение. Наша планета состоит из трех основных слоев. Внутренний слой – это ядро, наружный – земная кора, а между ними размещена мантия.

Ядро представляет собой центральную часть Земли и расположено на глубине 3000-6000 км. Радиус ядра составляет 3500 км. По мнению ученых, ядро состоит из двух частей: внешней – вероятно, жидкой, и внутренней - твердой. Температура ядра составляет около 5000 градусов. Современные представления о ядре нашей планеты получены в ходе длительных исследований и анализа полученных данных. Так, доказано, что в ядре планеты содержание железа достигает 35%, что обусловливает его характерные сейсмические свойства. Внешняя часть ядра представлена вращающимися потоками никеля и железа, которые хорошо проводят электрический ток.Происхождение магнитного поля Земли связано именно с этой частью ядра, так как глобальное магнитное поле создается электрическими токами, протекающими в жидком веществе внешнего ядра. Из-за очень высокой температуры внешнее ядро оказывает значительное влияние на соприкасающиеся с ним участки мантии. В некоторых местах возникают громадные тепломассопотоки, направленные к поверхности Земли. Внутреннее ядро Земли твердое, также имеет высокую температуру. Ученые полагают, что такое состояние внутренней части ядра обеспечивается очень высоким давлением в центре Земли, достигающим 3 млн. атмосфер. При увеличении расстояния от поверхности Земли повышается сжатие веществ, при этом многие из которых переходят в металлическое состояние.

Промежуточный слой – мантия – покрывает ядро. Мантия занимает около 80% объема нашей планеты, это самая большая часть Земли. Мантия расположена кверху от ядра, но не достигает поверхности Земли, снаружи она соприкасается с земной корой. В основном, вещество мантии находится в твердом состоянии, кроме верхнего вязкого слоя толщиной примерно 80 км. Это астеносфера, в переводе с греческого языка означает «слабый шар». По мнению ученых, вещество мантии непрерывно движется. При увеличении расстояния от земной коры в сторону ядра происходит переход вещества мантии в более плотное состояние.

Снаружи мантию покрывает земная кора – внешняя прочная оболочка. Ее толщина варьирует от нескольких километров под океанами до нескольких десятков километров в горных массивах. На долю земной коры приходится всего 0,5% общей массы нашей планеты. В состав коры входят оксиды кремния, железа, алюминия, щелочных металлов. Континентальная земная кора делится на три слоя: осадочный, гранитный и базальтовый. Океаническая земная кора состоит из осадочного и базальтового слоев.

Литосферу Земли формирует земная кора вместе с верхним слоем мантии. Литосфера слагается из тектонических литосферных плит, которые как будто «скользят» по астеносфере со скоростью от 20 до 75 мм в год. Двигающиеся друг относительно друга литосферные плиты различны по величине, а кинематику передвижения определяет тектоника плит.

Видео презентация "Внутреннее строение Земли":

Презентация "География как наука"

Похожие материалы:

Наша планета имеет несколько оболочек, является третьей от Солнца, по размерам занимает пятое место. Предлагаем вам ближе познакомиться с нашей планетой, изучить в разрезе. Для этого разберем каждый ее слой отдельно.

Оболочки

Известно, что Земля имеет три оболочки:

  • Атмосфера.
  • Литосфера.
  • Гидросфера.

Даже по названию нетрудно догадаться, что первая имеет воздушное происхождение, вторая - это твердая оболочка, а третья - водная.

Атмосфера

Это газовая оболочка нашей планеты. Ее особенность в том, что она простирается на тысячи километров над уровнем земли. Состав ее изменяется исключительно человеком и не в лучшую сторону. Каково значение атмосферы? Это как бы наш защитный купол, защищающий планету от разного космического мусора, который в большей мере сгорает в данном слое.

Защищает от пагубного воздействия ультрафиолета. Но, как известно, существуют появившиеся исключительно в результате жизнедеятельности людей. Благодаря этой оболочке у нас комфортная температура и влажность. Большое разнообразие живых существ - это тоже ее заслуга. Давайте рассмотрим строение по слоям. Выделим наиболее важные и значимые из них.

Тропосфера

Это нижний слой, он же самый плотный. Именно сейчас вы находитесь в нем. Геономия, наука о строении Земли, занимается изучением данного слоя. Его верхний предел варьируется от семи до двадцати километров, при этом чем выше температура, тем шире слой. Если рассматривать строение Земли в разрезе на полюсах и на экваторе, то он будет заметно отличаться, на экваторе он гораздо шире.

Что еще важного можно сказать о данном слое? Именно здесь происходит круговорот воды, формируются циклоны и антициклоны, генерируется ветер, если говорить обобщенно, то происходят все процессы, связанные с погодой и климатом. Очень интересное свойство, распространяющееся только на Тропосферу, если подняться на сто метров, то температура воздуха упадет примерно на один градус. За пределами данной оболочки закон действует с точностью наоборот. Есть одно место между тропосферой и стратосферой, где температура не меняется - тропопауза.

Стратосфера

Так как мы рассматриваем происхождение и строение Земли, то не можем пропустить слой стратосферы, название которого в переводе и имеет значение "слой" или "настил".

Именно в этом слое летают пассажирские лайнеры и сверхзвуковые самолеты. Отметим, что воздух здесь очень разряженный. Температура изменяется с набором высоты от минус пятидесяти шести до нуля, это продолжается до самой стратопаузы.

Есть ли там жизнь?

Как бы это парадоксально ни звучало, но в 2005 году в стратосфере обнаружили формы жизни. Это является неким доказательством теории происхождения жизни нашей планеты, занесенной из космоса.

Но, возможно, это мутировавшие бактерии, которые забрались на такие рекордные высоты. Какой бы ни была правда, удивляет одно: ультрафиолет никак не вредит бактериям, хотя в первую очередь погибают именно они.

Озоновый слой и мезосфера

Изучая строение Земли в разрезе, мы можем заметить всем знаменитый озоновый слой. Как уже говорилось ранее, именно он является нашим щитом от ультрафиолетового излучения. Давайте разберемся, откуда он взялся. Как ни странно, но его создали сами жители планеты. Мы знаем, что растения вырабатывают кислород, который необходим нам для дыхания. Он поднимается по толщам атмосферы, когда встречается с ультрафиолетовым излучением, то вступает в реакцию, в итоге из кислорода получается озон. Удивительно одно: ультрафиолет участвует в производстве озона и уберегает от него же жителей планеты Земля. Кроме того, в результате реакции атмосфера вокруг нагревается. Еще очень важно знать, что озоновый слой граничит с мезосферой, за его пределами жизни нет и быть не может.

Что касается следующего слоя, то он менее изучен, так как передвигаться по данному пространству могут только ракеты или самолеты с ракетными двигателями. Температура здесь доходит до минус ста сорока градусов по Цельсию. Когда изучается строение Земли в разрезе, для детей этот слой наиболее интересен, потому что именно благодаря ему мы видим такие явления, как звездопад. Интересен и тот факт, что ежедневно на Землю выпадает до ста тонн космической пыли, но она настолько мелкая и легкая, что на ее оседание может потребоваться до месяца.

Существует мнение, что эта пыль может вызывать дождь, подобно выбросам после ядерного взрыва или вулканическому пеплу.

Термосфера

Ее мы обнаружим на высоте от восьмидесяти пяти до восьмисот километров. Отличительная черта - высокая температура, тем не менее воздух очень разряженный, именно этим пользуется человек, когда запускает спутники. Молекул воздуха попросту не хватает для того, чтобы нагреть физическое тело.

Термосфера является источником северного сияния. Очень важно: сто километров - это официальная граница атмосферы, хоть явных признаков и нет. Полеты за этой чертой не невозможны, но очень затруднительны.

Экзосфера

Рассматривая в разрезе, последним внешним мы увидим эту оболочку. Она располагается на высоте более восьмисот километров над землей. Для этого слоя характерно то, что атомы могут легко и беспрепятственно улетать в просторы открытого космоса. Считается, что этим слоем и заканчивается атмосфера нашей планеты, высота от - примерно две-три тысячи километров. Недавно было обнаружено следующее: частицы, ускользнувшие из экзосферы, образуют купол, который располагается примерно на высоте до двадцати тысяч километров.

Литосфера

Это твердая оболочка Земли, имеет толщину от пяти до девяноста километров. Как и атмосферу, ее создают вещества, высвобождающиеся из верхней мантии. Стоит обратить внимание на то, что ее формирование продолжается и по сей день, в основном это происходит на дне океана. Основа литосферы - это кристаллы, образующиеся после охлаждения магмы.

Гидросфера

Это водная оболочка нашей земли, стоит отметить, что вода покрывает более семидесяти процентов всей планеты. Всю воду на Земле принято делить на:

  • Мировой океан.
  • Поверхностные воды.
  • Подземные воды.

Всего на планете Земля более 1300 миллионов километров кубических воды.

Земная кора

Итак, каково строение земли? Она имеет три составные части: атмосферу, литосферу и гидросферу. Предлагаем разобрать, как выглядит Земная кора. Внутреннее строение Земли представлено следующими слоями:

  • Кора.
  • Геосфера.
  • Ядро.

Кроме всего, Земля обладает гравитационным, магнитным и электрическим полями. Геосферами можно назвать: ядро, мантию, литосферу, гидросферу, атмосферу и магнитосферу. Они отличаются плотностью веществ, которые их составляют.

Ядро

Отметим, что чем плотнее составляющее вещество, тем ближе к центру планеты оно находится. То есть можно утверждать, что самая плотная материя нашей планеты - это ядро. Как известно, оно состоит из двух частей:

  • Внутреннего (твердого).
  • Внешнего (жидкого).

Если брать полностью все ядро, то радиус будет составлять примерно три с половиной тысячи километров. Внутренняя часть является твердой, так как там больше давление. Температура достигает четырех тысяч градусов по Цельсию. Состав внутреннего ядра - это загадка для человечества, но существует предположение, что оно состоит из чистого никелистого железа, а вот жидкая его часть (внешняя) состоит из железа с примесями никеля и серы. Именно жидкая часть ядра объясняет нам наличие магнитного поля.

Мантия

Как и ядро, она состоит из двух частей:

  • Нижняя мантия.
  • Верхняя мантия.

Мантийный материал можно изучить, благодаря мощным тектоническим поднятиям. Можно утверждать, что она находится в кристаллическом состоянии. Температура достигает двух с половиной тысяч градусов по Цельсию, но почему же оно не плавится? Благодаря сильнейшему давлению.

В жидком состоянии находится только астеносфера, при этом литосфера плавает в этом слое. Она обладает удивительной особенностью: при непродолжительных нагрузках она твердая, а при длительных - пластичная.

Loading...Loading...