Монотонные функции. Промежутки монотонности функции. §6. Общая схема исследования функции

Применение производной в исследовании функций.

§1. Возрастание и убывание функций.

Теорема (критерий монотонности дифференцируемой функции). Пусть функциянепрерывна напромежутке
и дифференцируема во всех его внутренних точках. Тогда:

Для монотонного возрастания функции необходимо и достаточно, чтобы в

0;

Для монотонного убывания функции необходимо и достаточно, чтобы в (а,в)
0;

Для постоянности функции необходимо и достаточно, чтобы в (а,в)
=0.

Док-во . Докажем достаточность для возрастающей функции. Выберем произвольно точки
. По теореме Лагранжа найдется точка

, такая что . Т.к. оба множителя в правой части неотрицательны, то
, т.е.
. Следовательно, функция является монотонно возрастающей.

Докажем необходимость для возрастающей функции. Пусть f(x ) – монотонно возрастает. Тогда
, следовательно
в (а,в).

Для убывающей функции доказательства аналогичны.

Докажем необходимость для постоянной функции. Если f (x )= const в (а,в), то
.

Докажем достаточность для постоянной функции. Пусть
в (a , b ) . Тогда тем более
в (a , b ) . Тогда по доказанному выше функция монотонно возрастает в (a , b ) , т.е. . С другой стороны, если
в (a , b ) , то тем более
в (a , b ) . Тогда по доказанному выше функция монотонно убывает в (a , b ) , т.е. . Одновременное выполнение этих условий возможно лишь при
.▲

Пример . Найти промежутки монотонности функции
.

Найдем производную
. Очевидно, что при производная
, функция является возрастающей. При
производная
, функция убывает.

§2. Экстремумы функции.

Пусть функция
задана на интервале
.

Опр . Точка называется точкой локального максимума функции f (x )
.

Опр . Точка называется точкой локального минимума функции f (x ) , если в некоторой ее окрестности выполняется условие:
.

Значения функции в точках локального минимума и максимума называют минимумом и максимумом функции. Минимум и максимум функции объединяют в понятие «экстремум функции»

(extr f ).

Отметить отличия локального и глобального экстремумов.

Теорема (необходимое условие локального экстремума). Еслидифференцируемаяфункция имеет экстремум в точке , то ее производная в этой точке равна нулю:
.

Док-во. Если - точка экстремума дифференцируемой функции, то существует некоторая окрестность этой точки, в которой выполнены условия теоремы Ферма. Тогда ее производная
.

Замечание . Функция может иметь экстремум и в точках, в которых она не дифференцируема (если эти точки входят в область определения). Например, функция
имеет экстремум в точке х=0, но не дифференцируема в ней.

Точки, в которых производная равна нулю или не существует, называются стационарными или критическими точками. Из теоремы следует, что точки локального экстремума функции являются ее критическими точками. Обратное утверждение неверно. Например, функция
имеет неотрицательную производную, т.е. возрастает на всей числовой оси, следовательно не имеет точек экстремума. В то же время,
является ее критической точкой.

Теорема (достаточное условие локального экстремума). Если при переходе через критическую точку производная дифференцируемой функции меняет знак с «+» на «-», то - точка локального максимума, если с «-» на «+», то - точка локального минимума.

Док-во. В соответствии с достаточным условием монотонности, функция возрастает слева от и убывает справа, тогда в силу непрерывности функции, является точкой максимума. Аналогичные рассуждения для минимума.

Замечание . Если при переходе через критическую точку производная не меняет знак, то в этой точке экстремума функции нет.

Теорема (2 достаточное условие локального экстремума) . Для того, чтобы функция имела локальный максимум (минимум) в критической точке , достаточно, чтобы в некоторой окрестности этой точки существовала непрерывная вторая производная и
(
).

(без док-ва).

Пример. Найти экстремумы функции
;

Ее производная:
.

Определим критические точки:
,
- критические точки.

Определим знак производной в окрестностях критических точек.

- точка минимума,
- минимум функции;

- точка максимума,
- максимум функции.

§3. Наибольшее и наименьшее значения функции на отрезке .

При решении прикладных задач бывает нужно найти глобальные экстремумы функции на некотором промежутке. Если этот промежуток является отрезком, то экстремумы функция может достигать как в точках экстремума, так и на концах отрезка.

Пример . Найти наибольшее значение функции
на отрезке
.

Решение . Данная функция является непрерывной на данном отрезке (т.к. знаменатель не обращается в нуль), а следовательно, может принимать экстремальные значения либо в точках экстремума, либо на концах отрезка. Вычислим производную:

. Тогда критическими точками являются точки х=0 и х=-2 . Данному отрезку принадлежит только точка х=0 . Вычислим значения функции в точке экстремума и на концах отрезка:

,
,
. Сравнивая эти значения, заключаем, что наибольшее значение функции достигается в точке х=0 .

§4. Выпуклость функции. Точки перегиба.

Опр. Функция называется выпуклой вверх (выпуклой) на промежутке Х, если
. График выпуклой на промежутке Х функции расположен над любой ее секущей (и под любой ее касательной) на этом промежутке.

Аналогично вводится определение функции, выпуклой вниз (вогнутой).

выпуклая (вверх) вогнутая (выпуклая вниз)

Теорема (критерий выпуклости функции) . Пусть функция
дифференцируема в интервале (а,в) . Тогда для выпуклости функции вниз необходимо и достаточно, чтобы
монотонно возрастала на этом интервале. Для выпуклости функции вверх необходимо и достаточно, чтобы
монотонно убывала на этом интервале.

Следствие (достаточное условие выпуклости) . Если вторая производная дважды дифференцируемой функции неотрицательна (неположительна) внутри некоторого промежутка, то функция выпукла вниз (вверх) на этом промежутке.

Опр . Точки, в которых график функции меняет направление выпуклости, называются точками перегиба графика функции.

Абсциссы точек перегиба являются точками экстремума первой производной.

Теорема (необходимое условие точки перегиба ). Вторая производная дважды дифференцируемой функции в точке перегиба равна нулю:
.

Абсциссы точек, в которых выполняется необходимое условие, называются критическими точками второго рода . Если перегиб графика есть, то только в таких точках.

Теорема (достаточное условие точки перегиба). Пусть
- дважды дифференцируема в интервале (а,в) . Тогда если вторая производная при переходе через критическую точку второго рода меняет знак, то точка
является точкой перегиба графика функции.

Замечание . Если смены знака второй производной не происходит, то перегиба графика в точке нет.

Пример.
,
;
- точка перегиба.

Итак, чтобы найти интервалы выпуклости функции, нужно:

1. Найти вторую производную функции.

2. Найти точки, в которых
или не существует.

3. Исследовать знак второй производной слева и справа от найденных точек и сделать вывод о направлении выпуклости и точках перегиба на основании достаточных условий.

§5. Асимптоты графика функции.

Графики некоторых функций расположены на плоскости так, что при неограниченном удалении от начала координат они неограниченно приближаются к некоторым прямым, но не пересекают их. Такие прямые называются асимптотами функции.

Асимптоты могут быть горизонтальными, вертикальными, наклонными.

Прямая y = a называется горизонтальной асимптотой к графику функции y = f (x )
.

Прямая x = b называется вертикальной асимптотой к графику функции y = f (x ) , если существует конечный предел
.

Вертикальные асимптоты следует искать в точках разрыва функции или на концах области определения.

Если у функции нет горизонтальных асимптот, то, возможно, есть наклонные.

Наклонная асимптота к графику функции существует в том случае, когда существуют конечные числа к и в , вычисляемые по формулам:

,
. Тогда наклонная асимптота задается уравнением y = kx + b . Если хотя бы одно из чисел к и в несобственное, то наклонных асимптот у графика функции нет.

§6. Общая схема исследования функции.

I . 1. Область определения.

2. Точки пересечения с осями координат.

3. Четность.

4. Периодичность.

5. непрерывность.

6. Асимптоты.

II . 7. Монотонность.

8. Точки экстремума, экстремумы.

10. Точки перегиба графика.

IV .11. Дополнительные точки.

12. Построение графика.

Монотонная функция – это функция, меняющаяся в одном и том же направлении.

Функция возрастает , если большему значению аргумента соответствует большее значение функции. Говоря иначе, если при возрастании значения x значение y тоже возрастает, то это возрастающая функция.

Функция убывает , если большему значению аргумента соответствует меньшее значение функции. Говоря иначе, если при возрастании значения x значение y убывает, то это убывающая функция.

Если функция возрастает или убывает на некотором промежутке, то она называется монотонной на этом промежутке.

Функция постоянна (немонотонна) , если она не убывает и не возрастает.

Теорема (необходимый признак монотонности):

1. Если дифференцируемая функция f(x) в некотором интервале возрастает, то ее производная на этом интервале неотрицательна, т.е .

2. Если дифференцируемая функция f(x) в некотором интервале убывает, то ее производная на этом интервале неположительна, .

3. Если функция не изменяется, то ее производная равна нулю, т.е. .

Теорема (достаточный признак монотонности):

Пусть f(x) непрерывна на интервале (a;b) и имеет производную во всех точках, тогда:

1. Если внутри (a;b) положительна, то f(x) возрастает.

2. Если внутри (a;b) отрицательна, то f(x) убывает.

3. Если , то f(x) постоянна.

Исследование функции на экстремумы.

Экстремум - максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум называется точкой экстремума. Соответственно, если достигается минимум - точка экстремума называется точкой минимума, а если максимум - точкой максимума.

1. Найдите область определения функции и интервалы, на которых функция непрерывна.

2. Найдите производную .

3. Найдите критические точки, т.е. точки в которых производная функции равна нулю или не существует.

4. В каждом из интервалов на которые область определения разбивается критическими точками, определить знак производной и характер изменения функции.

5. Относительно каждой критической точки определить, является ли она точной максимума, минимума или не является точкой экстремума.

Записать результат исследования функции промежутки монотонности и экстремума.

Наибольшее и наименьшее значение функции.

Схема нахождения наибольшего и наименьшего значений функции, непрерывной на отрезке.

1. Найти производную .

2. Найти на данном отрезке критические точки.

3. Вычислить значение функции в критических точках и на концах отрезка.

4. Из вычисленных значений выбрать наименьшее и наибольшее.

Выпуклость и вогнутость функции.

Дуга называется выпуклой, если она пересекается с любой своей секущей не более, чем в двух точках.

Линии, образуемые выпуклостью вверх, называются выпуклыми, а образуемые выпуклостью вниз - вогнутыми.

Геометрически ясно, что выпуклая дуга лежит под любой своей касательной, а вогнутая дуга – над касательной.

Точки перегиба функции.

Точкой перегиба называется такая точка линии, которая отделяет выпуклую дугу от вогнутой.

В точке перегиба касательная пересекает линию, в окрестности этой точки линия лежит по обе стороны от касательной.

Интервалу убывания первой производной соответствует участок выпуклости графика функции, а интервалу возрастания – участок вогнутости.

Теорема (о точках перегиба):

Если вторая производная всюду в интервале отрицательна, то дуга линии y = f(x), соответствующая этому интервалу, выпуклая. Если вторая производная всюду в интервале положительна, то дуга линии y = f(x), соответствующая этому интервалу, вогнутая.

Необходимый признак точки перегиба:

Если – абсцисса точки перегиба, то либо , либо не существует.

Достаточный признак точки перегиба:

Точка есть точка перегиба линии y = f(x), если , а ;

При слева от нее лежит участок выпуклости, справа – участок вогнутости, а при слева лежит участок вогнутости, а справа – выпуклости.

Асимптоты.

Определение.

Асимптотой графика функции называется прямая, обладающая тем свойством, что расстояние от точки графика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат.

Виды асимптот:

1. Прямая называется вертикальной асимптотой графика функции y=f(x), если хотя бы одна из прямых значений или равно или .

Которой не меняет знака, то есть либо всегда неотрицательное, либо всегда неположительное. Если в дополнение приращение не равно нулю, то функция называется стро́го моното́нной . Монотонная функция - это функция, меняющаяся в одном и том же направлении.

Функция возрастает, если большему значению аргумента соответствует большее значение функции. Функция убывает, если большему значению аргумента соответствует меньшее значение функции.

Определения

Пусть дана функция Тогда

. . . .

(Строго) возрастающая или убывающая функция называется (строго) монотонной.

Другая терминология

Иногда возрастающие функции называют неубыва́ющими , а убывающие функции невозраста́ющими . Строго возрастающие функции тогда зовут просто возрастающими, а строго убывающие просто убывающими.

Свойства монотонных функций

Условия монотонности функции

Обратное, вообще говоря, неверно. Производная строго монотонной функции может обращаться в ноль . Однако, множество точек, где производная не равна нулю, должно быть плотно на интервале Точнее имеет место

Аналогично, строго убывает на интервале тогда и только тогда, когда выполнены следующие два условия:

Примеры

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Монотонная функция" в других словарях:

    Монотонная функция - — функция f(x), которая может быть либо возрастающей на некотором промежутке (то есть, чем больше любое значение аргумента на этом промежутке, тем больше значение функции), либо убывающей (в противоположном случае).… …

    Функция, которая при возрастании аргумента либо всегда возрастает (или хотя бы не убывает), либо всегда убывает (не возрастает) … Большой Энциклопедический словарь

    - (monotonie function) Функция, в которой по мере роста значения аргумента значение функции всегда изменяется в том же направлении. Следовательно, если у=f(x), то либо dy/dx > 0 для всех значений х, и в этом случае у является возрастающей… … Экономический словарь

    - (от греч. monótonos однотонный) функция, приращения которой Δf(x) = f(x’) f(x) при Δx = x’ x > 0 не меняют знака, т. е. либо всегда неотрицательны, либо всегда неположительны. Выражаясь не совсем точно, М. ф. это функции, меняющиеся в… … Большая советская энциклопедия

    Функция, которая при возрастании аргумента либо всегда возрастает (или хотя бы не убывает), либо всегда убывает (не возрастает). * * * МОНОТОННАЯ ФУНКЦИЯ МОНОТОННАЯ ФУНКЦИЯ, функция, которая при возрастании аргумента либо всегда возрастает (или… … Энциклопедический словарь

    Функция одного переменного, определенная на нек ром подмножестве действительных чисел, приращение к рой при не меняет знака, т. е. либо всегда неотрицательно, либо всегда неположительно. Если строго больше (меньше) нуля, когда то М. ф. наз.… … Математическая энциклопедия

    Функция, к рая при возрастании аргумента либо всегда возрастает (или хотя бы не убывает), либо всегда убывает (не возрастает) … Естествознание. Энциклопедический словарь

    Это последовательность, элементы которой с увеличением номера не убывают, или, наоборот, не возрастают. Подобные последовательности часто встречаются при исследованиях и имеют ряд отличительных особенностей и дополнительных свойств.… … Википедия

    функция - Команда или группа людей, а также инструментарий или другие ресурсы, которые они используют для выполнения одного или нескольких процессов или деятельности. Например, служба поддержки пользователей. Этот термин также имеет другое значение:… … Справочник технического переводчика

    Функция - 1. Зависимая переменная величина; 2. Соответствие y=f(x) между переменными величинами, в силу которого каждому рассматриваемому значению некоторой величины x (аргумента или независимой переменной) соответствует определенное значение… … Экономико-математический словарь

Необходимое и достаточное условие монотонности функции на промежутке.

Необходимое и достаточное условие постоянства функции на промежутке

Теорема
Пусть функция f(x) определена в промежутке X и имеет внутри него конечную производную f/(x), а на концах (если они принадлежат X) сохраняет непрерывность. Для того чтобы f(x) была в X постоянной , достаточно условие f/(x)=0 внутри X.

Доказательство
Пусть это условие выполнено. Фиксируем некоторую точку x0 из промежутка X и возьмем любую другую его точку x. Для промежутка [х0,х] или [х,х0] удовлетворены все условия теоремы Лагранжа . Следовательно, можем написать

f(x)−f(x0)=f/(c)(x−x0),

Где c содержится между x0 и x, а значит, заведомо лежит внутри X. Но, по предположению, f/(c)=0, так что для всех x из X

f(x)=f(x0)=const.

Теорема доказана.

Заметим, что высказанное условие, очевидно, является и необходимым для постоянства функции.

Следствие . Пусть две функции f(x) и g(x) определены в промежутке X и внутри него имеют конечные производные f/(x) и g/(x), а на концах (если они принадлежат X) сохраняют непрерывность. Если при этом f/(x)=g/(x) внутри X,

то во всем промежутке X эти функции разнятся лишь на постоянную:

f(x)=g(x)+C (С = const).

Для доказательства достаточно применить теорему к разности f(x)−g(x) , так как ее производная f/(x)−g/(x) внутри X сводится к нулю, то сама разность в X будет постоянной.

Теорема (достаточное условие)

Если функция f(x) дифференцируема на (a,b) и f/(x)≥0 (f/(x)≤0) на (a,b), то f(x) не убывает (не возрастает) на (a,b).

Доказательство
Рассмотрим случай когда f/(x)≥0 . Рассмотрим две точки x1,x2∈(a,b) и применим формулу Лагранжа. На функция f(x) удовлетворяет всем условиям этой теоремы. Следует, чтоx1

f(x2)−f(x1)=f/(c)(x2−x1), где c∈(x1,x2) и правая часть больше нуля, значит f(x2)−f(x1)≥0 или f(x2)≥f(x1) при x2>x1, функция не убывает.

Теорема доказана.

Замечание

Если требовать, что f/(x)>0 (f/(x)<0), тогда функция строго возрастает (убывает).

6. необходимое условие экстремума.

Необходимый признак существования экстремума:

Для нахождения экстремумов функции z =f (x,y) сначала нужно найти стационарные точки этой функции, в которых частные производные функции z =f (x,y) равны нулю. Для этого нужно решить систему уравнений:

Функция может иметь экстремум также в тех точках, где хотя бы одна из частных производных не существует.

Условие (1) является необходимым условием экстремума, но оно не является достаточным, т.е. в стационарной точке экстремума может и не быть.



Рассмотрим достаточное условие экстремума . Пусть точка M 0 – стационарная точка функции z=f (x,y), которая имеет непрерывные частные производные второго порядка на некоторой окрестности точки M0,

Если D>0, то экстремум в точке M0 есть, при этом M0 – точка минимума при A>0 и M0 – точка максимума при A<0. Если D<0, то экстремума в точке M0 нет.

При D=0 требуются дополнительные исследования функции в окрестности точки M0, мы не будем рассматривать этот случай.

7. достаточное условие экстремума. Смотри в 6 вопросе.

Направление выпуклости графика функции.

Точки перегиба

Дадим определение направления выпуклости графика функции. Предположим, что функция дифференцируема на интервале . Это значит (см. §3), что на данном интервале график функции имеет в каждой своей точке касательную, не параллельную оси ординат.

Определение. Говорят, что график функции имеет на интервале выпуклость, направленную вниз (вверх), если график этой функции в пределах данного интервала лежит выше (ниже) любой своей касательной.

Следующая теорема устанавливает связь между направлением выпуклости графика функции и знаком её второй производной. Эта теорема приводится здесь без доказательства.

Теорема 25.1. Пусть функция имеет на интервале вторую производную. Тогда, если эта производная положительна (отрицательна) всюду на этом интервале, то график функции имеет на интервале выпуклость, направленную вниз (вверх).

Дадим определение точки перегиба. Предположим, что функция дифференцируема на интервале , т.е. в любой точке, абсцисса которой принадлежит интервалу , график этой функции имеет касательную.

Определение. Точка графика функции называется точкой перегиба этого графика, если существует такая окрестность точки оси абсцисс, в пределах которой график функции слева и справа от точки имеет разные направления выпуклости.

График функции , изображённый на рисунке 6, на интервале имеет выпуклость, направленную вверх, на интервале – выпуклость, направленную вниз; точка (0,0) является точкой перегиба этого графика.

Сформулируем без доказательства необходимое условие перегиба графика функции, имеющей вторую производную.

Теорема 25.2. Если функция имеет в точке вторую производную и график этой функции имеет перегиб в точке , то .

Отсюда ясно, что перегиб следует искать лишь в тех точках оси абсцисс, в которых сама функция дифференцируема, а вторая производная этой функции либо равна нулю, либо не существует. Такие точки называются критическими точками второго рода.

Заметим, что равенство нулю второй производной является необходимым, но не достаточным условием перегиба. Так, например, функция в точке не имеет перегиба, хотя вторая производная этой функции, равная , в точке равна нулю.
Сформулируем теперь без доказательства достаточное условие перегиба.

Теорема 25.3. Пусть функция имеет вторую производную в некоторой окрестности точки , при этом сама точка является критической точкой второго рода. Тогда, если в пределах указанной окрестности вторая производная имеет разные знаки слева и справа от точки , то график этой функции имеет перегиб в точке .

возрастающей на промежутке \(X\) , если для любых \(x_1, x_2\in X\) , таких что \(x_1

Функция называется неубывающей

\(\blacktriangleright\) Функция \(f(x)\) называется убывающей на промежутке \(X\) , если для любых \(x_1, x_2\in X\) , таких что \(x_1f(x_2)\) .

Функция называется невозрастающей на промежутке \(X\) , если для любых \(x_1, x_2\in X\) , таких что \(x_1

\(\blacktriangleright\) Возрастающие и убывающие функции называют строго монотонными , а невозрастающие и неубывающие - просто монотонными .

\(\blacktriangleright\) Основные свойства:

I. Если функция \(f(x)\) - строго монотонна на \(X\) , то из равенства \(x_1=x_2\) (\(x_1,x_2\in X\) ) следует \(f(x_1)=f(x_2)\) , и наоборот.

Пример: функция \(f(x)=\sqrt x\) является строго возрастающей при всех \(x\in \) , поэтому уравнение \(x^2=9\) имеет на этом промежутке не более одного решения, а точнее одно: \(x=-3\) .

функция \(f(x)=-\dfrac 1{x+1}\) является строго возрастающей при всех \(x\in (-1;+\infty)\) , поэтому уравнение \(-\dfrac 1{x+1}=0\) имеет на этом промежутке не более одного решения, а точнее ни одного, т.к. числитель левой части никогда не может быть равен нулю.

III. Если функция \(f(x)\) - неубывает (невозрастает) и непрерывна на отрезке \(\) , причем на концах отрезка она принимает значения \(f(a)=A, f(b)=B\) , то при \(C\in \) (\(C\in \) ) уравнение \(f(x)=C\) всегда имеет хотя бы одно решение.

Пример: функция \(f(x)=x^3\) является строго возрастающей (то есть строго монотонной) и непрерывной при всех \(x\in\mathbb{R}\) , поэтому при любом \(C\in (-\infty;+\infty)\) уравнение \(x^3=C\) имеет ровно одно решение: \(x=\sqrt{C}\) .

Задание 1 #3153

Уровень задания: Легче ЕГЭ

имеет ровно два корня.

Перепишем уравнение в виде: \[(3x^2)^3+3x^2=(x-a)^3+(x-a)\] Рассмотрим функцию \(f(t)=t^3+t\) . Тогда уравнение перепишется в виде: \ Исследуем функцию \(f(t)\) . \ Следовательно, функция \(f(t)\) возрастает при всех \(t\) . Значит, каждому значению функции \(f(t)\) соответствует ровно одно значение аргумента \(t\) . Следовательно, для того, чтобы уравнение имело корни, нужно: \ Чтобы полученное уравнение имело два корня, нужно, чтобы его дискриминант был положительным: \

Ответ:

\(\left(-\infty;\dfrac1{12}\right)\)

Задание 2 #2653

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при которых уравнение \

имеет два корня.

(Задача от подписчиков.)

Сделаем замену: \(ax^2-2x=t\) , \(x^2-1=u\) . Тогда уравнение примет вид: \ Рассмотрим функцию \(f(w)=7^w+\sqrtw\) . Тогда наше уравнение примет вид: \

Найдем производную \ Заметим, что при всех \(w\ne 0\) производная \(f"(w)>0\) , т.к. \(7^w>0\) , \(w^6>0\) . Заметим также, что сама функция \(f(w)\) определена при всех \(w\) . Т.к. к тому же \(f(w)\) непрерывна, то мы можем сделать вывод, что \(f(w)\) возрастает на всем \(\mathbb{R}\) .
Значит, равенство \(f(t)=f(u)\) возможно тогда и только тогда, когда \(t=u\) . Вернемся к изначальным переменным и решим полученное уравнение:

\ Для того, чтобы данное уравнение имело два корня, оно должно быть квадратным и его дискриминант должен быть положительным:

\[\begin{cases} a-1\ne 0\\ 4-4(a-1)>0\end{cases} \quad\Leftrightarrow\quad \begin{cases}a\ne1\\a<2\end{cases}\]

Ответ:

\((-\infty;1)\cup(1;2)\)

Задание 3 #3921

Уровень задания: Равен ЕГЭ

Найдите все положительные значения параметра \(a\) , при которых уравнение

имеет как минимум \(2\) решения.

Перенесем все слагаемые, содержащие \(ax\) , влево, а содержащие \(x^2\) – вправо, и рассмотрим функцию
\

Тогда исходное уравнение примет вид:
\

Найдем производную:
\

Т.к. \((t-2)^2 \geqslant 0, \ e^t>0, \ 1+\cos{2t} \geqslant 0\) , то \(f"(t)\geqslant 0\) при любых \(t\in \mathbb{R}\) .

Причем \(f"(t)=0\) , если \((t-2)^2=0\) и \(1+\cos{2t}=0\) одновременно, что не выполняется ни при каких \(t\) . Следовательно, \(f"(t)> 0\) при любых \(t\in \mathbb{R}\) .

Таким образом, функция \(f(t)\) строго возрастает при всех \(t\in \mathbb{R}\) .

Значит, уравнение \(f(ax)=f(x^2)\) равносильно уравнению \(ax=x^2\) .

Уравнение \(x^2-ax=0\) при \(a=0\) имеет один корень \(x=0\) , а при \(a\ne 0\) имеет два различных корня \(x_1=0\) и \(x_2=a\) .
Нам нужно найти значения \(a\) , при которых уравнение будет иметь не менее двух корней, учитывая также то, что \(a>0\) .
Следовательно, ответ: \(a\in (0;+\infty)\) .

Ответ:

\((0;+\infty)\) .

Задание 4 #1232

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \

имеет единственное решение.

Домножим правую и левую части уравнения на \(2^{\sqrt{x+1}}\) (т.к. \(2^{\sqrt{x+1}}>0\) ) и перепишем уравнение в виде: \

Рассмотрим функцию \(y=2^t\cdot \log_{\frac{1}{9}}{(t+2)}\) при \(t\geqslant 0\) (т.к. \(\sqrt{x+1}\geqslant 0\) ).

Производная \(y"=\left(-2^t\cdot \log_9{(t+2)}\right)"=-\dfrac{2^t}{\ln9}\cdot \left(\ln 2\cdot \ln{(t+2)}+\dfrac{1}{t+2}\right)\) .

Т.к. \(2^t>0, \ \dfrac{1}{t+2}>0, \ \ln{(t+2)}>0\) при всех \(t\geqslant 0\) , то \(y"<0\) при всех \(t\geqslant 0\) .

Следовательно, при \(t\geqslant 0\) функция \(y\) монотонно убывает.

Уравнение можно рассматривать в виде \(y(t)=y(z)\) , где \(z=ax, t=\sqrt{x+1}\) . Из монотонности функции следует, что равенство возможно только в том случае, если \(t=z\) .

Значит, уравнение равносильно уравнению: \(ax=\sqrt{x+1}\) , которое в свою очередь равносильно системе: \[\begin{cases} a^2x^2-x-1=0\\ ax \geqslant 0 \end{cases}\]

При \(a=0\) система имеет одно решение \(x=-1\) , которое удовлетворяет условию \(ax\geqslant 0\) .

Рассмотрим случай \(a\ne 0\) . Дискриминант первого уравнения системы \(D=1+4a^2>0\) при всех \(a\) . Следовательно, уравнение всегда имеет два корня \(x_1\) и \(x_2\) , причем они разных знаков (т.к. по теореме Виета \(x_1\cdot x_2=-\dfrac{1}{a^2}<0\) ).

Это значит, что при \(a<0\) условию \(ax\geqslant 0\) подходит отрицательный корень, при \(a>0\) условию подходит положительный корень. Следовательно, система всегда имеет единственное решение.

Значит, \(a\in \mathbb{R}\) .

Ответ:

\(a\in \mathbb{R}\) .

Задание 5 #1234

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \

имеет хотя бы один корень из отрезка \([-1;0]\) .

Рассмотрим функцию \(f(x)=2x^3-3x(ax+x-a^2-1)-3a-a^3\) при некотором фиксированном \(a\) . Найдем ее производную: \(f"(x)=6x^2-6ax-6x+3a^2+3=3(x^2-2ax+a^2+x^2-2x+1)=3((x-a)^2+(x-1)^2)\) .

Заметим, что \(f"(x)\geqslant 0\) при всех значениях \(x\) и \(a\) , причем равна \(0\) только при \(x=a=1\) . Но при \(a=1\) :
\(f"(x)=6(x-1)^2 \Rightarrow f(x)=2(x-1)^3 \Rightarrow\) уравнение \(2(x-1)^3=0\) имеет единственный корень \(x=1\) , не удовлетворяющий условию. Следовательно, \(a\) не может быть равно \(1\) .

Значит, при всех \(a\ne 1\) функция \(f(x)\) является строго возрастающей, следовательно, уравнение \(f(x)=0\) может иметь не более одного корня. Учитывая свойства кубической функции, график \(f(x)\) при некотором фиксированном \(a\) будет выглядеть следующим образом:


Значит, для того, чтобы уравнение имело корень из отрезка \([-1;0]\) , необходимо: \[\begin{cases} f(0)\geqslant 0\\ f(-1)\leqslant 0 \end{cases} \Rightarrow \begin{cases} a(a^2+3)\leqslant 0\\ (a+2)(a^2+a+4)\geqslant 0 \end{cases} \Rightarrow \begin{cases} a\leqslant 0\\ a\geqslant -2 \end{cases} \Rightarrow -2\leqslant a\leqslant 0\]

Таким образом, \(a\in [-2;0]\) .

Ответ:

\(a\in [-2;0]\) .

Задание 6 #2949

Уровень задания: Равен ЕГЭ

Найдите все значения параметра \(a\) , при каждом из которых уравнение \[(\sin^2x-5\sin x-2a(\sin x-3)+6)\cdot (\sqrt2a+8x\sqrt{2x-2x^2})=0\]

имеет корни.

(Задача от подписчиков)

ОДЗ уравнения: \(2x-2x^2\geqslant 0 \quad\Leftrightarrow\quad x\in \) . Следовательно, для того, чтобы уравнение имело корни, нужно, чтобы хотя бы одно из уравнений \[\sin^2x-5\sin x-2a(\sin x-3)+6=0 \quad {\small{\text{или}}}\quad \sqrt2a+8x\sqrt{2x-2x^2}=0\] имело решения на ОДЗ.

1) Рассмотрим первое уравнение \[\sin^2x-5\sin x-2a(\sin x-3)+6=0 \quad\Leftrightarrow\quad \left[\begin{gathered}\begin{aligned} &\sin x=2a+2\\ &\sin x=3\\ \end{aligned} \end{gathered}\right. \quad\Leftrightarrow\quad \sin x=2a+2\] Данное уравнение должно иметь корни на \(\) . Рассмотрим окружность:

Таким образом, мы видим, что для любых \(2a+2\in [\sin 0;\sin 1]\) уравнение будет иметь одно решение, а для всех остальных – не будет иметь решений. Следовательно, при \(a\in \left[-1;-1+\sin 1\right]\) уравнение имеет решения.

2) Рассмотрим второе уравнение \[\sqrt2a+8x\sqrt{2x-2x^2}=0 \quad\Leftrightarrow\quad 8x\sqrt{x-x^2}=-a\]

Рассмотрим функцию \(f(x)=8x\sqrt{x-x^2}\) . Найдем ее производную: \ На ОДЗ производная имеет один ноль: \(x=\frac34\) , который к тому же является точкой максимума функции \(f(x)\) .
Заметим, что \(f(0)=f(1)=0\) . Значит, схематично график \(f(x)\) выглядит так:

Следовательно, для того, чтобы уравнение имело решения, нужно, чтобы график \(f(x)\) пересекался с прямой \(y=-a\) (на рисунке изображен один из подходящих вариантов). То есть нужно, чтобы \ . При этих \(x\) :

Функция \(y_1=\sqrt{x-1}\) является строго возрастающей. Графиком функции \(y_2=5x^2-9x\) является парабола, вершина которой находится в точке \(x=\dfrac{9}{10}\) . Следовательно, при всех \(x\geqslant 1\) функция \(y_2\) также строго возрастает (правая ветвь параболы). Т.к. сумма строго возрастающих функций есть строго возрастающая, то \(f_a(x)\) – строго возрастает (константа \(3a+8\) не влияет на монотонность функции).

Функция \(g_a(x)=\dfrac{a^2}{x}\) при всех \(x\geqslant 1\) представляет собой часть правой ветви гиперболы и является строго убывающей.

Решить уравнение \(f_a(x)=g_a(x)\) - значит найти точки пересечения функций \(f\) и \(g\) . Из их противоположной монотонности следует, что уравнение может иметь не более одного корня.

При \(x\geqslant 1\) \(f_a(x)\geqslant 3a+4, \ \ \ 0. Следовательно, уравнение будет иметь единственное решение в том случае, если:


\\cup

Ответ:

\(a\in (-\infty;-1]\cup}

Loading...Loading...