Неравномерное равноускоренное движение. Формулы прямолинейного равноускоренного движения. Равноускоренное движение: определение и примеры

Равноускоренное движение - это движение, при котором вектор ускорения не меняется по модулю и направлению. Примеры такого движения: велосипед, который катится с горки; камень брошенный под углом к горизонту. Равномерное движение - частный случай равноускоренного движения с ускорением, равным нулю.

Рассмотрим случай свободного падения (тело брошено под уголом к горизонту) более подробно. Такое движение можно представить в виде суммы движений относительно вертикальной и горизонтальной осей.

В любой точке траектории на тело действует ускорение свободного падения g → , которое не меняется по величине и всегда направлено в одну сторону.

Вдоль оси X движение равномерное и прямолинейное, а вдоль оси Y - равноускоренное и прямолинейное. Будем рассматривать проекции векторов скорости и ускорения на оси.

Формула для скорости при равноускоренном движении:

Здесь v 0 - начальная скорость тела, a = c o n s t - ускорение.

Покажем на графике, что при равноускоренном движении зависимость v (t) имеет вид прямой линии.

​​​​​​​

Ускорение можно определить по углу наклона графика скорости. На рисунке выше модуль ускорения равен отношению сторон треугольника ABC.

a = v - v 0 t = B C A C

Чем больше угол β , тем больше наклон (крутизна) графика по отношению к оси времени. Соответственно, тем больше ускорение тела.

Для первого графика: v 0 = - 2 м с; a = 0 , 5 м с 2 .

Для второго графика: v 0 = 3 м с; a = - 1 3 м с 2 .

По данному графику можно также вычислить перемещение тела за время t . Как это сделать?

Выделим на графике малый отрезок времени ∆ t . Будем считать, что он настолько мал, что движение за время ∆ t можно считать равномерным движением со скоростью, равной скорости тела в середине промежутка ∆ t . Тогда, перемещение ∆ s за время ∆ t будет равно ∆ s = v ∆ t .

Разобьем все время t на бесконечно малые промежутки ∆ t . Перемещение s за время t равно площади трапеции O D E F .

s = O D + E F 2 O F = v 0 + v 2 t = 2 v 0 + (v - v 0) 2 t .

Мы знаем, что v - v 0 = a t , поэтому окончательная формула для перемещения тела примет вид:

s = v 0 t + a t 2 2

Для того, чтобы найти координату тела в данный момент времени, нужно к начальной координате тела добавить перемещение. Изменение координаты в зависимости от времени выражает закон равноускоренного движения.

Закон равноускоренного движения

Закон равноускоренного движения

y = y 0 + v 0 t + a t 2 2 .

Еще одна распространенная задача кинематики, которая возникает при анализе равноускоренного движения - нахождение координаты при заданных значениях начальной и конечной скоростей и ускорения.

Исключая из записанных выше уравнений t и решая их, получаем:

s = v 2 - v 0 2 2 a .

По известным начальной скорости, ускорению и перемещению можно найти конечную скорость тела:

v = v 0 2 + 2 a s .

При v 0 = 0 s = v 2 2 a и v = 2 a s

Важно!

Величины v , v 0 , a , y 0 , s , входящие в выражения, являются алгебраическими величинами. В зависимости от характера движения и направления координатных осей в условиях конкретной задачи они могут принимать как положительные, так и отрицательные значения.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Выводятся формулы прямолинейного движения материальной точки для трех способов задания движения - при известной зависимости координаты от времени; при известной зависимости ускорения от времени и ускорения от координаты. Рассмотрены прямолинейное равномерное и прямолинейное равноускоренное движения.

Содержание

Основные формулы прямолинейного движения

Пусть материальная точка движется по оси . Далее и обозначают координату и скорость точки в начальный момент времени .
Если задан закон изменения ее координаты от времени :
,
то дифференцируя координату по времени, получаем скорость и ускорение точки:
;
.

Пусть нам известна зависимость ускорения от времени :
.
Тогда зависимости скорости и координаты от времени определяются по формулам:
(1) ;
(2) ;
(3) ;
(4) .

Пусть нам известна зависимость ускорения от координаты :
.
Тогда зависимость скорости от координаты имеет вид:
(5) .
Зависимость координаты от времени определяется в неявном виде:
(6) .

Для прямолинейного равномерного движения :
;
;
.

Для прямолинейного равноускоренного движения :
;
;
;
.

Приведенные здесь формулы можно применить не только для прямолинейного движения, но и для некоторых случаев криволинейного движения . Например для трехмерного движения в прямоугольной системе координат , если движение вдоль оси не зависит от проекций величин на другие координатные оси. Тогда формулы (1) - (6) дают зависимости для проекций величин на ось .

Также эти формулы применимы при движении по заданной траектории при естественном способе задания движения. Только здесь в качестве координаты выступает длина дуги траектории, отсчитываемая от выбранного начала отсчета . Тогда вместо проекций и следует подставить и - проекции скорости и ускорения на выбранное направление касательной к траектории.

Прямолинейное движение при известной зависимости координаты от времени

Рассмотрим случай, когда материальная точка движется по прямой линии. Выберем систему координат с началом в произвольной точке . Ось направим вдоль линии движения точки. Тогда положение точки однозначно определяется значением одной координаты .

Если задан закон изменения координаты от времени :
,
то дифференцируя по времени , найдем закон изменения скорости:
.
При точка движется в положительном направлении оси (на рисунке слева направо). При точка движется в отрицательном направлении оси (на рисунке справа налево).

Дифференцируя скорость по времени, находим закон изменения ускорения:
.
Поскольку прямая не имеет кривизны, то радиус кривизны траектории можно считать бесконечно большим, . Тогда нормальное ускорение равно нулю:
.
То есть ускорение точки тангенциальное (касательное):
.
Что вполне естественно, поскольку и скорость и ускорение точки направлены по касательной к траектории - прямой, вдоль которой происходит движение.
Если и одного знака (то есть оба положительные или оба отрицательные), то модуль скорости увеличивается (скорость возрастает по абсолютной величине). Если и разных знаков, то модуль скорости уменьшается (скорость убывает по абсолютной величине).

Прямолинейное движение при известном ускорении

Ускорение, зависящее от времени

Пусть нам известен закон изменения ускорения от времени:
.
Нашей задачей является найти закон изменения скорости и закон изменения координаты от времени:
;
.

Применим формулу:
.
Это дифференциальное уравнение первого порядка с разделяющимися переменными
;
.
Здесь - постоянная интегрирования. Отсюда видно, что только по известной зависимости ускорения от времени, нельзя однозначно определить зависимость скорости от времени. Мы получили целое множество законов изменения скорости, которые отличаются друг от друга на произвольную постоянную . Чтобы найти нужный нам закон изменения скорости, мы должны задать еще одно значение. Как правило таким значением является значение скорости в начальный момент времени . Чтобы это сделать перейдем от неопределенного интеграла к определенному:
.
Пусть - скорость точки в начальный момент времени . Подставим :
;
;
.
Таким образом закон изменения скорости от времени имеет вид:
(1) .

Аналогичным образом определяем закон изменения координаты от времени.
.
(2) .
Здесь - значение координаты в начальный момент времени .

Подставим (1) в (2).

.

Область интегрирования в двойном интеграле.

Если изменить порядок интегрирования в двойном интеграле, то получим:

.

Таким образом, мы получили следующие формулы:
(3) ;
(4) .

Ускорение, зависящее от координаты

Пусть теперь нам известен закон изменения ускорения от координаты:
.
Нам нужно решить дифференциальное уравнение:
.
Это дифференциальное уравнение не содержит независимую переменную в явном виде. Общий метод решения таких уравнений рассмотрен на странице “Дифференциальные уравнения высших порядков, не содержащие независимую переменную в явном виде ”. Согласно этому методу мы считаем, что является функцией от :
;
.
Разделяем переменные и интегрируем:
;
;
;
.
Извлекая корень нужно учесть, что скорость может быть как положительной, так и отрицательной. На небольшом удалении от точки , знак определяется знаком постоянной . Однако, если ускорение направлено противоположно скорости, то скорость точки уменьшится до нуля и направление движения изменится на противоположное. Поэтому правильный знак, плюс или минус, выбирается при рассмотрении конкретного движения.
(5) .
В начале движения
.

Теперь определяем зависимость координаты от времени. Дифференциальное уравнение для координаты имеет вид:
.
Это дифференциальное уравнение с разделяющимися переменными . Разделяем переменные и интегрируем:
(6) .
Это уравнение определяет зависимость координаты от времени в неявном виде.

Прямолинейное равномерное движение

Применим полученные выше результаты для случая прямолинейного равномерного движения. В этом случае ускорение
.
;
. То есть скорость является постоянной, а координата линейно зависит от времени. Формулы (5) и (6) дают тот же самый результат.

Прямолинейное равноускоренное движение

Теперь рассмотрим прямолинейное равноускоренное движение.
В этом случае ускорение является величиной постоянной:
.
По формулам (1) и (2) находим:
;

.

Если применим формулу (5), то получим зависимость скорости от координаты:
.

Прямолинейное движение в векторном виде

Полученные формулы можно представить в векторном виде. Для этого достаточно умножить уравнения, определяющие , и на единичный вектор (орт) , направленный вдоль оси .

Тогда радиус-вектор точки, векторы скорости и ускорения имеют вид:
;
;
.

Часть механики, в которой изучают движение, не рассматривая причины, вызывающие тот или иной характер движения, называют кинематикой .
Механическим движением называют изменение положения тела относительно других тел
Системой отсчёта называют тело отсчёта, связанную с ним систему координат и часы.
Телом отсчёта называют тело, относительно которого рассматривают положение других тел.
Материальной точкой называют тело, размерами которого в данной задаче можно пренебречь.
Траекторией называют мысленную линию, которую при своём движении описывает материальная точка.

По форме траектории движение делится на:
а) прямолинейное - траектория представляет собой отрезок прямой;
б) криволинейное - траектория представляет собой отрезок кривой.

Путь - это длина траектории, которую описывает материальная точка за данный промежуток времени. Это скалярная величина.
Перемещение - это вектор, соединяющий начальное положение материальной точки с её конечным положением (см. рис.).

Очень важно понимать, чем путь отличается от перемещения. Самое главной отличие в том, что перемещение - это вектор с началом в точке отправления и с концом в точке назначения (при этом абсолютно неважно, каким маршрутом это перемещение совершалось). А путь - это, наборот, скалярная величина, отражающая длину пройденной траектории.

Равномерным прямолинейным движением называют движение, при котором материальная точка за любые равные промежутки времени совершает одинаковые перемещения
Скоростью равномерного прямолинейного движения называют отношение перемещения ко времени, за которое это перемещение произошло:


Для неравномерного движения пользуются понятием средней скорости. Часто вводят среднюю скорость как скалярную величину. Это скорость такого равномерного движения, при котором тело проходит тот же путь за то же время, что и при неравномерном движении:


Мгновенной скоростью называют скорость тела в данной точке траектории или в данный момент времени.
Равноускоренное прямолинейное движение - это прямолинейное движение, при котором мгновенная скорость за любые равные промежутки времени изменяется на одну и ту же величину

Ускорением называют отношение изменения мгновенной скорости тела ко времени, за которое это изменение произошло:

Зависимость координаты тела от времени в равномерном прямолинейном движении имеет вид: x = x 0 + V x t , где x 0 - начальная координата тела, V x - скорость движения.
Свободным падением называют равноускоренное движение с постоянным ускорением g = 9,8 м/с 2 , не зависящим от массы падающего тела. Оно происходит только под действием силы тяжести.

Скорость при свободном падении рассчитывается по формуле:

Перемещение по вертикали рассчитывается по формуле:

Одним из видов движения материальной точки является движение по окружности. При таком движении скорость тела направлена по касательной, проведённой к окружности в той точке, где находится тело (линейная скорость). Описывать положение тела на окружности можно с помощью радиуса, проведённого из центра окружности к телу. Перемещение тела при движении по окружности описывается поворотом радиуса окружности, соединяющего центр окружности с телом. Отношение угла поворота радиуса к промежутку времени, в течение которого этот поворот произошёл, характеризует быстроту перемещения тела по окружности и носит название угловой скорости ω :

Угловая скорость связана с линейной скоростью соотношением

где r - радиус окружности.
Время, за которое тело описывает полный оборот, называется периодом обращения. Величина, обратная периоду - частота обращения - ν

Поскольку при равномерном движении по окружности модуль скорости не меняется, но меняется направление скорости, при таком движении существует ускорение. Его называют центростремительным ускорением , оно направлено по радиусу к центру окружности:

Основные понятия и законы динамики

Часть механики, изучающая причины, вызвавшие ускорение тел, называется динамикой

Первый закон Ньютона:
Cуществуют такие системы отсчёта, относительно которых тело сохраняет свою скорость постоянной или покоится, если на него не действуют другие тела или действие других тел скомпенсировано.
Свойство тела сохранять состояние покоя или равномерного прямолинейного движения при уравновешенных внешних силах, действующих на него, называется инертностью. Явление сохранения скорости тела при уравновешенных внешних силах называют инерцией. Инерциальными системами отсчёта называют системы, в которых выполняется первый закон Ньютона.

Принцип относительности Галилея:
во всех инерциальных системах отсчёта при одинаковых начальных условиях все механические явления протекают одинаково, т.е. подчиняются одинаковым законам
Масса - это мера инертности тела
Сила - это количественная мера взаимодействия тел.

Второй закон Ньютона:
Сила, действующая на тело, равна произведению массы тела на ускорение, сообщаемое этой силой:
$F↖{→} = m⋅a↖{→}$

Сложение сил заключается в нахождении равнодействующей нескольких сил, которая производит такое же действие, как и несколько одновременно действующих сил.

Третий закон Ньютона:
Силы, с которыми два тела действуют друг на друга, расположены на одной прямой, равны по модулю и противоположны по направлению:
$F_1↖{→} = -F_2↖{→} $

III закон Ньютона подчёркивает, что действие тел друг на друга носит характер взаимодействия. Если тело A действует на тело B, то и тело B действует на тело A (см. рис.).


Или короче, сила действия равна силе противодействия. Часто возникает вопрос: почему лошадь тянет сани, если эти тела взаимодействуют с равными силами? Это возможно только за счёт взаимодействия с третьим телом - Землёй. Сила, с которой копыта упираются в землю, должна быть больше, чем сила трения саней о землю. Иначе копыта будут проскальзывать, и лошадь не сдвинется с места.
Если тело подвергнуть деформации, то возникают силы, препятствующие этой деформации. Такие силы называют силами упругости .

Закон Гука записывают в виде

где k - жёсткость пружины, x - деформация тела. Знак «−» указывает, что сила и деформация направлены в разные стороны.

При движении тел друг относительно друга возникают силы, препятствующие движению. Эти силы называются силами трения. Различают трение покоя и трение скольжения. Сила трения скольжения подсчитывается по формуле

где N - сила реакции опоры, µ - коэффициент трения.
Эта сила не зависит от площади трущихся тел. Коэффициент трения зависит от материала, из которого сделаны тела, и качества обработки их поверхности.

Трение покоя возникает, если тела не перемещаются друг относительно друга. Сила трения покоя может меняться от нуля до некоторого максимального значения

Гравитационными силами называют силы, с которыми любые два тела притягиваются друг к другу.

Закон всемирного тяготения:
любые два тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

Здесь R - расстояние между телами. Закон всемирного тяготения в таком виде справедлив либо для материальных точек, либо для тел шарообразной формы.

Весом тела называют силу, с которой тело давит на горизонтальную опору или растягивает подвес.

Сила тяжести - это сила, с которой все тела притягиваются к Земле:

При неподвижной опоре вес тела равен по модулю силе тяжести:

Если тело движется по вертикали с ускорением, то его вес будет изменяться.
При движении тела с ускорением, направленным вверх, его вес

Видно, что вес тела больше веса покоящегося тела.

При движении тела с ускорением, направленным вниз, его вес

В этом случае вес тела меньше веса покоящегося тела.

Невесомостью называется такое движение тела, при котором его ускорение равно ускорению свободного падения, т.е. a = g. Это возможно в том случае, если на тело действует только одна сила - сила тяжести.
Искусственный спутник Земли - это тело, имеющее скорость V1, достаточную для того, чтобы двигаться по окружности вокруг Земли
На спутник Земли действует только одна сила - сила тяжести, направленная к центру Земли
Первая космическая скорость - это скорость, которую надо сообщить телу, чтобы оно обращалось вокруг планеты по круговой орбите.

где R - расстояние от центра планеты до спутника.
Для Земли, вблизи её поверхности, первая космическая скорость равна

1.3. Основные понятия и законы статики и гидростатики

Тело (материальная точка) находится в состоянии равновесия, если векторная сумма сил, действующих на него, равна нулю. Различают 3 вида равновесия: устойчивое, неустойчивое и безразличное. Если при выведении тела из положения равновесия возникают силы, стремящиеся вернуть это тело обратно, это устойчивое равновесие. Если возникают силы, стремящиеся увести тело ещё дальше из положения равновесия, это неустойчивое положение ; если никаких сил не возникает - безразличное (см. рис. 3).


Когда речь идёт не о материальной точке, а о теле, которое может иметь ось вращения, то для достижения положения равновесия помимо равенства нулю суммы сил, действующих на тело, необходимо, чтобы алгебраическая сумма моментов всех сил, действующих на тело, была равна нулю.

Здесь d -плечо силы. Плечом силы d называют расстояние от оси вращения до линии действия силы.

Условие равновесия рычага:
алгебраическая сумма моментов всех вращающих тело сил равна нулю.
Давлением называют физическую величину, равную отношению силы, действующей на площадку, перпендикулярную этой силе, к площади площадки:

Для жидкостей и газов справедлив закон Паскаля:
давление распространяется по всем направлениям без изменений.
Если жидкость или газ находятся в поле силы тяжести, то каждый вышерасположенный слой давит на нижерасположенные и по мере погружения внутрь жидкости или газа давление растёт. Для жидкостей

где ρ - плотность жидкости, h - глубина проникновения в жидкость.

Однородная жидкость в сообщающихся сосудах устанавливается на одном уровне. Если в колена сообщающихся сосудов залить жидкость с разными плотностями, то жидкость с большей плотностью устанавливается на меньшей высоте. В этом случае

Высоты столбов жидкости обратно пропорциональны плотностям:

Гидравлический пресс представляет собой сосуд, заполненный маслом или иной жидкостью, в котором прорезаны два отверстия, закрытые поршнями. Поршни имеют разную площадь. Если к одному поршню приложить некоторую силу, то сила, приложенная ко второму поршню, оказывается другой.
Таким образом, гидравлический пресс служит для преобразования величины силы. Поскольку давление под поршнями должно быть одинаковым, то

Тогда A1 = A2.
На тело, погружённое в жидкость или газ, со стороны этой жидкости или газа действует направленная вверх выталкивающая сила, которую называют силой Архимеда
Величину выталкивающей силы устанавливает закон Архимеда : на тело, погружённое в жидкость или газ, действует выталкивающая сила, направленная вертикально вверх и равная весу жидкости или газа, вытесненного телом:

где ρ жидк - плотность жидкости, в которую погружено тело; V погр - объём погружённой части тела.

Условие плавания тела - тело плавает в жидкости или газе, когда выталкивающая сила,действующая на тело, равна силе тяжести, действующей на тело.

1.4. Законы сохранения

Импульсом тела называют физическую величину, равную произведению массы тела на его скорость:

Импульс - векторная величина. [p] =кг·м/с. Наряду с импульсом тела часто пользуются импульсом силы. Это произведение силы на время её действия
Изменение импульса тела равно импульсу действующей на это тело силы. Для изолированной системы тел (система, тела которой взаимодействуют только друг с другом) выполняется закон сохранения импульса : сумма импульсов тел изолированной системы до взаимодействия равна сумме импульсов этих же тел после взаимодействия.
Механической работой называют физическую величину, которая равна произведению силы, действующей на тело, на перемещение тела и на косинус угла между направлением силы и перемещения:

Мощность - это работа, совершённая в единицу времени:

Способность тела совершать работу характеризуют величиной, которую называют энергией. Механическую энергию делят на кинетическую и потенциальную. Если тело может совершать работу за счёт своего движения, говорят, что оно обладает кинетической энергией. Кинетическая энергия поступательного движения материальной точки подсчитывается по формуле

Если тело может совершать работу за счёт изменения своего положения относительно других тел или за счёт изменения положения частей тела, оно обладает потенциальной энергией. Пример потенциальной энергии: тело, поднятое над землёй, его энергия подсчитывается по формуле

где h - высота подъёма

Энергия сжатой пружины:

где k - коэффициент жёсткости пружины, x - абсолютная деформация пружины.

Сумма потенциальной и кинетической энергии составляет механическую энергию. Для изолированной системы тел в механике справедлив закон сохранения механической энергии : если между телами изолированной системы не действуют силы трения (или другие силы, приводящие к рассеянию энергии), то сумма механических энергий тел этой системы не изменяется (закон сохранения энергии в механике). Если же силы трения между телами изолированной системы есть, то при взаимодействии часть механической энергии тел переходит во внутреннюю энергию.

1.5. Механические колебания и волны

Колебаниями называются движения, обладающие той или иной степенью повторяемости во времени. Колебания называются периодическими, если значения физических величин, изменяющихся в процессе колебаний, повторяются через равные промежутки времени.
Гармоническими колебаниями называются такие колебания, в которых колеблющаяся физическая величина x изменяется по закону синуса или косинуса, т.е.

Величина A, равная наибольшему абсолютному значению колеблющейся физической величины x, называется амплитудой колебаний . Выражение α = ωt + ϕ определяет значение x в данный момент времени и называется фазой колебаний. Периодом T называется время, за которое колеблющееся тело совершает одно полное колебание. Частотой периодических колебаний называют число полных колебаний, совершённых за единицу времени:

Частота измеряется в с -1 . Эта единица называется герц (Гц).

Математическим маятником называется материальная точка массой m, подвешенная на невесомой нерастяжимой нити и совершающая колебания в вертикальной плоскости.
Если один конец пружины закрепить неподвижно, а к другому её концу прикрепить некоторое тело массой m, то при выведении тела из положения равновесия пружина растянется и возникнут колебания тела на пружине в горизонтальной или вертикальной плоскости. Такой маятник называется пружинным.

Период колебаний математического маятника определяется по формуле

где l - длина маятника.

Период колебаний груза на пружине определяется по формуле

где k - жёсткость пружины, m - масса груза.

Распространение колебаний в упругих средах.
Среда называется упругой, если между её частицами существуют силы взаимодействия. Волнами называется процесс распространения колебаний в упругих средах.
Волна называется поперечной , если частицы среды колеблются в направлениях, перпендикулярных к направлению распространения волны. Волна называется продольной , если колебания частиц среды происходят в направлении распространения волны.
Длиной волны называется расстояние между двумя ближайшими точками, колеблющимися в одинаковой фазе:

где v - скорость распространения волны.

Звуковыми волнами называют волны, колебания в которых происходят с частотами от 20 до 20 000 Гц.
Скорость звука различна в различных средах. Скорость звука в воздухе равна 340 м/c.
Ультразвуковыми волнами называют волны, частота колебаний в которых превышает 20 000 Гц. Ультразвуковые волны не воспринимаются человеческим ухом.

При прямолинейном равноускоренном движении тело

  1. двигается вдоль условной прямой линии,
  2. его скорость постепенно увеличивается или уменьшается,
  3. за равные промежутки времени скорость меняется на равную величину.

Например, автомобиль из состояния покоя начинает двигаться по прямой дороге, и до скорости, скажем, в 72 км/ч он двигается равноускоренно. Когда заданная скорость достигнута, то авто движется без изменения скорости, т. е. равномерно. При равноускоренном движении его скорость возрастала от 0 до 72 км/ч. И пусть за каждую секунду движения скорость увеличивалась на 3,6 км/ч. Тогда время равноускоренного движения авто будет равно 20 секундам. Поскольку ускорение в СИ измеряется в метрах на секунду в квадрате, то надо ускорение 3,6 км/ч за секунду перевести в соответствующие единицы измерения. Оно будет равно (3,6 * 1000 м) / (3600 с * 1 с) = 1 м/с 2 .

Допустим, через какое-то время езды с постоянной скоростью автомобиль начал тормозить, чтобы остановиться. Движение при торможении тоже было равноускоренным (за равные промежутки времени скорость уменьшалась на одинаковую величину). В данном случае вектор ускорения будет противоположен вектору скорости. Можно сказать, что ускорение отрицательно.

Итак, если начальная скорость тела нулевая, то его скорость через время в t секунд будет равно произведению ускорения на это время:

При падении тела «работает» ускорение свободного падения, и скорость тела у самой поверхности земли будет определяться по формуле:

Если известна текущая скорость тела и время, которое понадобилось, чтобы развить такую скорость из состояния покоя, то можно определить ускорение (т. е. как быстро менялась скорость), разделив скорость на время:

Однако тело могло начать равноускоренное движение не из состояния покоя, а уже обладая какой-то скоростью (или ему придали начальную скорость). Допустим, вы бросаете камень с башни вертикально вниз с приложением силы. На такое тело действует ускорение свободного падения, равное 9,8 м/с 2 . Однако ваша сила придала камню еще скорости. Таким образом, конечная скорость (в момент касания земли) будет складываться из скорости, развившийся в результате ускорения и начальной скорости. Таким образом, конечная скорость будет находиться по формуле:

Однако, если камень бросали вверх. То начальная его скорость направлена вверх, а ускорение свободного падения вниз. То есть вектора скоростей направлены в противоположные стороны. В этом случае (а также при торможении) произведение ускорения на время надо вычитать из начальной скорости:

Получим из этих формул формулы ускорения. В случае ускорения:

at = v – v 0
a = (v – v 0)/t

В случае торможения:

at = v 0 – v
a = (v 0 – v)/t

В случае, когда тело равноускоренно останавливается, то в момент остановки его скорость равна 0. Тогда формула сокращается до такого вида:

Зная начальную скорость тела и ускорение торможения, определяется время, через которое тело остановится:

Теперь выведем формулы для пути, которое тело проходит при прямолинейном равноускоренном движении . Графиком зависимость скорости от времени при прямолинейном равномерном движении является отрезок, параллельный оси времени (обычно берется ось x). Путь при этом вычисляется как площадь прямоугольника под отрезком. То есть умножением скорости на время (s = vt). При прямолинейном равноускоренном движении графиком является прямая, но не параллельная оси времени. Эта прямая либо возрастает в случае ускорения, либо убывает в случае торможения. Однако путь также определяется как площадь фигуры под графиком.

При прямолинейном равноускоренном движении эта фигура представляет собой трапецию. Ее основаниями являются отрезок на оси y (скорость) и отрезок, соединяющий точку конца графика с ее проекцией на ось x. Боковыми сторонами являются сам график зависимости скорости от времени и его проекция на ось x (ось времени). Проекция на ось x - это не только боковая сторона, но еще и высота трапеции, т. к. перпендикулярна его основаниям.

Как известно, площадь трапеции равна полусумме оснований на высоту. Длина первого основания равна начальной скорости (v 0), длина второго основания равна конечной скорости (v), высота равна времени. Таким образом получаем:

s = ½ * (v 0 + v) * t

Выше была дана формула зависимости конечной скорости от начальной и ускорения (v = v 0 + at). Поэтому в формуле пути мы можем заменить v:

s = ½ * (v 0 + v 0 + at) * t = ½ * (2v 0 + at) * t = ½ * t * 2v 0 + ½ * t * at = v 0 t + 1/2at 2

Итак, пройденный путь определяется по формуле:

s = v 0 t + at 2 /2

(К данной формуле можно прийти, рассматривая не площадь трапеции, а суммируя площади прямоугольника и прямоугольного треугольника, на которые разбивается трапеция.)

Если тело начало двигаться равноускоренно из состояния покоя (v 0 = 0), то формула пути упрощается до s = at 2 /2.

Если вектор ускорения был противоположен скорости, то произведение at 2 /2 надо вычитать. Понятно, что при этом разность v 0 t и at 2 /2 не должна стать отрицательной. Когда она станет равной нулю, тело остановится. Будет найден путь торможения. Выше была приведена формула времени до полной остановки (t = v 0 /a). Если подставить в формулу пути значение t, то путь торможения приводится к такой формуле.

1.2. Прямолинейное движение

1.2.2. Равнопеременное прямолинейное движение

Равнопеременным прямолинейным движением материальной точки (тела) называют движение, скорость которого за любые равные промежутки времени

∆t 1 = ∆t 2 = ... = ∆t n


изменяется соответственно на равные величины

a = Δ v 1 Δ t 1 = Δ v 2 Δ t 2 = ... = Δ v n Δ t n .

Векторную физическую величину, характеризующую быстроту изменения скорости, численно равную отношению изменения скорости ко времени, за которое это изменение произошло:


называют ускорением . В Международной системе единиц ускорение измеряется в метрах в секунду за секунду (1 м/с 2).

Траекторией материальной точки при равнопеременном прямолинейном движении является прямая линия.

Различают два вида равнопеременного прямолинейного движения: равноускоренное прямолинейное движение и равнозамедленное прямолинейное движение.

Скорость материальной точки при равнопеременном движении изменяется по закону:

v → (t) = v → 0 + a → t ,

где v → (t) - вектор скорости точки в произвольный момент времени t ; v → 0 - вектор ее начальной скорости; a → - вектор ускорения.

Модуль скорости при равнопеременном движении может как увеличиваться (равноускоренное движение), так и уменьшаться (равнозамедленное движение).

Уравнение движения материальной точки при равнопеременном прямолинейном движении записывается в виде:

r → (t) = r → 0 + v → 0 t + a → t 2 2 ,

где r → (t) - радиус-вектор положения точки в произвольный момент времени t ; r → 0 - радиус-вектор начального положения материальной точки.

Если равнопеременное прямолинейное движение материальной точки (тела) происходит вдоль одной из координатных осей (например, Ox ), то уравнение движения целесообразно записывать в виде:

x (t) = x 0 + v 0 x t + a x t 2 2 ,


v x (t ) = v 0 x + a x t ,

Равноускоренное прямолинейное движение

Равноускоренным прямолинейным движением называют движение, скорость которого за любые равные промежутки времени увеличивается на равные величины. Векторы скорости v → и ускорения a → при таком движении имеют одинаковые направления:

v →     a → .

Равноускоренное прямолинейное движение материальной точки целесообразно рассматривать вдоль одной из координатных осей, например Ox .

положительным направлением оси Ox (проекции скорости и ускорения положительные),

то уравнение движения принимает вид (рис. 1.4):

x (t) = x 0 + v 0 t + a t 2 2 ,


а закон изменения (проекции) скорости с течением времени -

v x (t ) = v 0 + at ,

где x (t ) - зависимость координаты от времени; x 0 - значение координаты в начальный момент времени (t = 0); v 0 x - проекция начальной скорости материальной точки (тела) на координатную ось Ox ; a x - проекция ускорения на данную ось.

Если вектор начальной скорости (а значит, и ускорения) материальной точки совпадает с отрицательным направлением оси Ox (проекции скорости и ускорения отрицательные),

Рис. 1.5

то уравнение движения выглядит следующим образом (рис. 1.5):

x (t) = x 0 − v 0 t − a t 2 2 ,


а закон изменения (проекции) скорости с течением времени -

v x (t ) = −v 0 − at ,

где x (t ) - зависимость координаты от времени; x 0 - значение координаты в начальный момент времени (t = 0); v 0 x - проекция начальной скорости материальной точки (тела) на координатную ось Ox ; a x - проекция ускорения на данную ось.

При равноускоренном прямолинейном движении модуль вектора перемещения и пройденный материальной точкой (телом ) путь совпадают и могут быть вычислены с помощью формулы

| Δ r → (t) | = S (t) = v 0 t + a t 2 2


или

S = v 2 − v 0 2 2 a ,

Путь, пройденный материальной точкой при равноускоренном прямолинейном движении за n секунд:

S (n) = v 0 n + a n 2 2 ,

где v 0 - модуль скорости в начале временного интервала; a - модуль ускорения;


и путь, пройденный за n -ю секунду, отличаются (рис. 1.6).

Рис. 1.6

Путь, пройденный за n -ю секунду, может быть найден как разность:

S n = S (n) − S (n − 1) ,

где S (n) = v 0 n + a n 2 2 - путь, пройденный за n секунд; S (n − 1) = v 0 (n − 1) + a (n − 1) 2 2 - путь, пройденный за (n − 1) секунд.

При равноускоренном прямолинейном движении без начальной скорости путь, пройденный телом за n -ю секунду, рассчитывается по формуле

S n = a (2 n − 1) 2 = (n − 0,5) a ,

где a - модуль ускорения.

Равнозамедленное прямолинейное движение

Равнозамедленным прямолинейным движением называют движение, скорость которого за любые равные промежутки времени уменьшается на равные величины. Вектор скорости v → и вектор ускорения a → при таком движении имеют противоположные направления:

v →   ↓   a → .

Равнозамедленное прямолинейное движение материальной точки целесообразно рассматривать вдоль одной из координатных осей, например Ox .

Если при равнозамедленном прямолинейном движении вектор начальной скорости материальной точки совпадает с положительным направлением оси Ox , то вектор ее ускорения имеет направление, противоположное указанной оси (рис. 1.7).

Рис. 1.7

Уравнение движения в этом случае имеет вид:

x (t) = x 0 + v 0 t − a t 2 2 ,


а закон изменения (проекции) скорости с течением времени -

v x (t ) = v 0 − at ,

где x (t ) - зависимость координаты от времени; x 0 - значение координаты в начальный момент времени (t = 0); v 0 x - проекция начальной скорости материальной точки (тела) на координатную ось Ox ; a x - проекция ускорения на данную ось.

Если при равнозамедленном прямолинейном движении вектор начальной скорости материальной точки совпадает с отрицательным направлением оси Ox (проекция начальной скорости отрицательная), то вектор ее ускорения направлен в положительном направлении указанной оси (проекция ускорения положительная) (рис. 1.8).

Рис. 1.8

Уравнение движения выглядит следующим образом:

x (t) = x 0 − v 0 t + a t 2 2 ,


а закон изменения (проекции) скорости с течением времени -

v x (t ) = − v 0 + at ,

где x (t ) - зависимость координаты от времени; x 0 - значение координаты в начальный момент времени (t = 0); v 0 x - проекция начальной скорости материальной точки (тела) на координатную ось Ox ; a x - проекция ускорения на данную ось.

При равнозамедленном прямолинейном движении существует точка остановки (точка поворота), где скорость обращается в нуль; ей соответствует момент времени τ ост, который определяется из условия v (τ ост) = 0:

τ ост = v 0 a .

До точки остановки тело движется равнозамедленно (в ту сторону, куда направлен вектор начальной скорости v → 0).

После точки остановки тело разворачивается и движется в противоположном направлении равноускоренно с нулевой начальной скоростью.

Путь , пройденный материальной точкой (телом) за определенный интервал времени при равнозамедленном прямолинейном движении, вычисляют по-разному в зависимости от того, содержит ли данный интервал точку остановки.

Если точка остановки не попадает в указанный интервал времени, то пройденный путь определяют как

S (t) = v 0 t − a t 2 2 или S = v 0 2 − v 2 2 a ,

где v 0 - модуль скорости в начале временного интервала; v - модуль скорости в конце временного интервала; a - модуль ускорения.

Если точка остановки попадает в указанный интервал времени, то пройденный путь определяют как сумму:

S (t ) = S 1 + S 2 ,

где S 1 - путь, пройденный материальной точкой за интервал времени от t 1 до τ ост; S 2 - путь, пройденный материальной точкой за интервал времени от τ ост до t 2 (рис. 1.9):

S 1 = | x (τ ост) − x (t 1) | ; S 2 = | x (t 2) − x (τ ост) | ,

Рис. 1.9

При равнозамедленном прямолинейном движении модуль вектора перемещения материальной точки удобно вычислять как разность координат (рис. 1.10):

Рис. 1.10

| Δ r → (t) | = | x (t 2) − x (t 1) | ,

где x (t 1) - координата материальной точки в момент времени t 1 ; x (t 2) - координата точки в момент времени t 2 ; x (τ ост) - координата точки в момент времени τ ост.

Пример 1. Материальная точка движется вдоль оси Ox . Проекция ее скорости с течением времени меняется по закону v = 12 − 4,0t , где скорость задана в метрах в секунду, время - в секундах. Определить модуль перемещения материальной точки за интервал времени от 2,0 с до 4,0 с.

v x = v 0 x + a x t ,

где v 0 x = 12 м/с - проекция начальной скорости; a x = −4,0 м/с 2 - проекция ускорения на указанную координатную ось.

x (t) = x 0 + v 0 x t + a x t 2 2 = x 0 + 12 t − 2,0 t 2 ,

где x 0 - начальная координата точки.

Вычислим координаты материальной точки в моменты времени t 1 = 2,0 c и t 2 = 4,0 c. Для этого подставим в уравнение движения значения t 1 и t 2:

x (t 1) = x 0 + 12 t 1 − 2 t 1 2 = x 0 + 12 ⋅ 2,0 − 2 ⋅ (2,0) 2 = x 0 + 16 ,

x (t 2) = x 0 + 12 t 2 − 2 t 2 2 = x 0 + 12 ⋅ 4,0 − 2 ⋅ (4,0) 2 = x 0 + 16 .

Модуль перемещения материальной точки вычислим как разность координат:

| Δ r → | = | x (t 2) − x (t 1) | = 0 .

Перемещение материальной точки равно нулю, т.е. она возвратилась в то место на координатной оси, где находилась в момент времени t 1 = 2,0 c.

Пример 2. Материальная точка движется вдоль оси Ox . Проекция ее скорости с течением времени меняется по закону v = 9,0 − 1,5t , где скорость задана в метрах в секунду, время - в секундах. Определить путь, пройденный материальной точкой за интервал времени от 4,0 с до 7,0 с.

Решение. При равнопеременном движении зависимость проекции скорости от времени имеет вид:

v x = v 0 x + a x t ,

где v 0 x = 9,0 м/с - проекция начальной скорости; a x = −1,5 м/с 2 - проекция ускорения на указанную координатную ось.

Запишем уравнение движения материальной точки:

x (t) = x 0 + v 0 x t + a x t 2 2 = x 0 + 9,0 t − 0,75 t 2 ,

где x 0 - начальная координата точки.

Точка остановки, вычисленная по формуле

τ ост = v 0 a = 9,0 1,5 = 6,0 c,


попадает в интервал времени, указанный в условии задачи.

В интервале времени от t1 = 4,0 c до τост = 6,0 с точка движется равнозамедленно. Следовательно, пройденный путь вычисляем по формуле

S 1 = | x (τ ост) − x (t 1) | ,

x (t 1) = x 0 + 9,0 t 1 − 0,75 t 1 2 = x 0 + 9,0 ⋅ 4,0 − 0,75 ⋅ (4,0) 2 = (x 0 + 24) м.

Таким образом, путь S1, пройденный материальной точкой в указанном интервале времени, равен:

S 1 = | x (τ ост) − x (t 1) | = | (x 0 + 27) − (x 0 + 24) | = 3,0 м.

В интервале времени от τост = 6,0 с до t2 = 7,0 c точка движется равноускоренно. Следовательно, пройденный путь вычисляем по формуле

S 1 = | x (t 2) − x (τ ост) | ,

x (τ ост) = x 0 + 9,0 τ ост − 0,75 τ ост 2 =

X 0 + 9,0 ⋅ 6,0 − 0,75 ⋅ (6,0) 2 = (x 0 + 27) м;

x (t 2) = x 0 + 9,0 t 2 − 0,75 t 2 2 =

X 0 + 9,0 ⋅ 7,0 − 0,75 ⋅ (7,0) 2 = (x 0 + 26,25) м.

Таким образом, путь S 2 , пройденный материальной точкой в указанном интервале времени, равен:

S 2 = | x (t 2) − x (τ ост) | = | (x 0 + 26,25) − (x 0 + 27) | = 0,75 м ≈ 0,8 м.

Суммарный путь S , пройденный материальной точкой в интервале времени от 4,0 с до 7,0 с, составляет

S = S 1 + S 2 ≈ 3,0 + 0,8 = 3,8 м.

Пример 3. Тело движется по прямой и в начале пути имеет скорость 3 м/с. Пройдя некоторое расстояние, тело приобретает скорость 9 м/с. Считая движение тела равноускоренным, определить его скорость на половине указанного расстояния.

Решение. В условии задачи нет указаний на время движения тела. Поэтому для вычисления пройденного пути целесообразно воспользоваться формулой, не содержащей время движения, т.е.

S = v 2 − v 0 2 2 a ,

где v 0 - модуль скорости материальной точки в начале пути; v - модуль ее скорости в конце пути; a - модуль ускорения.

Разобьем путь на два равных участка S 1 = S /2 и S 2 = S /2, обозначив величину скорости в начале первого участка v 0 , в конце второго участка - v к, в конце первого (начале второго) участка пути - v , как показано на рисунке.

Запишем указанную формулу дважды:

  • для первого участка пути -

    S 1 = v 2 − v 0 2 2 a ;

  • для второго участка пути -

    S 2 = v к 2 − v 2 2 a ,

    где v 0 = 3 м/с; v к = 9 м/с.

Отношение уравнений дает равенство

S 1 S 2 = v 2 − v 0 2 2 a ⋅ 2 a v к 2 − v 2 = v 2 − v 0 2 v к 2 − v 2 = 1 ,


позволяющее вычислить величину искомой скорости:

v = v к 2 + v 0 2 2 = 9 2 + 3 2 2 ≈ 7 м/с.

Loading...Loading...