Нахождение площади фигуры, ограниченной линиями y=f(x), x=g(y). Площадь фигур на клетчатой бумаге. Полная инструкция (2020) Как найти площадь произвольной фигуры

Теорема 1.

Площадь квадрата равна квадрату его стороны.

Докажем что площадь S квадрата со стороной a равна a 2 . Возьмем квадрат со стороной 1 и разобьем его на n равных квадратов так, как показано на рисунке 1. геометрия площадь фигура теорема

Рисунок 1.

Так как сторона квадрата равна 1, то площадь каждого маленького квадрата равна. Сторона каждого маленького квадрата равна, т.е. равна а. Из этого следует, что. Теорема доказана.

Теорема 2.

Площадь параллелограмма равна произведению его стороны на высоту, проведенную к этой стороне (рис.2.):

S = a * h.

Пусть ABCD - данный параллелограмм. Если он не является прямоугольником, то один из его углов A или B острый. Пусть для определенности угол A острый (рис.2.).


Рисунок 2.

Опустим перпендикуляр AE из вершины A на прямую CB. Площадь трапеции AECD равна сумме площадей параллелограмма ABCD и треугольника AEB. Опустим перпендикуляр DF из вершины D на прямую CD. Тогда площадь трапеции AECD равна сумме площадей прямоугольника AEFD и треугольника DFC. Прямоугольные треугольники AEB и DFC равны, а значит, имеют равные площади. Отсюда следует, что площадь параллелограмма ABCD равна площади прямоугольника AEFD, т.е. равна AE * AD. Отрезок AE - высота параллелограмма, опущенная к стороне AD , и, следовательно, S = a * h. Теорема доказана.

Теорема 3

Площадь треугольника равна половине произведения его стороны на проведенную к ней высоту (рис.3.):


Рисунок 3.

Доказательство.

Пусть ABC - данный треугольник. Дополним его до параллелограмма ABCD, как показано на рисунке (рис.3.1.).


Рисунок 3.1.

Площадь параллелограмма равна сумме площадей треугольников ABC и CDA. Так как эти треугольники равны, то площадь параллелограмма равна удвоенной площади треугольника ABC. Высота параллелограмма, соответствующая стороне CB, равна высоте треугольника, проведенной к стороне CB. Отсюда следует утверждение теоремы, Теорема доказана.

Теорема 3.1.

Площадь треугольника равна половине произведения двух его сторон на синус угла между ними (рис 3.2.).


Рисунок 3.2.

Доказательство.

Введем систему координат с началом в точке С так, чтобы B лежала на положительной полуоси C x , а точка А имела положительную ординату. Площадь данного треугольника можно вычислить по формуле, где h - высота треугольника. Но h равна ординате точки А, т.е. h=b sin C. Следовательно, . Теорема доказана.

Теорема 4.

Площадь трапеции равна произведению полусуммы его оснований на высоту (рис.4.).


Рисунок 4.

Доказательство.

Пусть ABCD - данная трапеция (рис.4.1.).

Рисунок 4.1.

Диагональ AC трапеции разбивает ее на два треугольника: ABC и CDA.

Следовательно, площадь трапеции равна сумме площадей этих треугольников.

Площадь треугольника ACD равна площадь треугольника ABC равна. Высоты AF и CE этих треугольников равна расстоянию h между параллельными прямыми BC и AD, т.е. высоте трапеции. Следовательно, . Теорема доказана.

Площади фигур имеют огромное значение в геометрии, как в науке. Ведь площадь это одна из важнейших величин в геометрии. Без знания площадей невозможно решить множество геометрических задач, доказать теоремы, обосновать аксиомы. Площади фигур имели огромное значение много веков назад, но не утратили своего значения в современном мире. Понятия площадей используются во многих профессиях. Они применяются в строительстве, проектирование и во многих других видах деятельности человека. Из этого можно сделать вывод,что без развития геометрии, в частности понятий о площадях, человечество не смогло бы такой большой прорыв в области наук и технике.

Вычисление площади фигуры – это, пожалуй, одна из наиболее сложных задач теории площадей. В школьной геометрии учат находить площади основных геометрических фигур таких как, например, треугольник, ромб, прямоугольник, трапеция, круг и т.п. Однако зачастую приходится сталкиваться с вычислением площадей более сложных фигур. Именно при решении таких задач очень удобно использовать интегральное исчисление.

Определение.

Криволинейной трапецией называют некоторую фигуру G, ограниченную линиями y = f(x), у = 0, х = а и х = b, причем функция f(x) непрерывна на отрезке [а; b] и не меняет на нем свой знак (рис. 1). Площадь криволинейной трапеции можно обозначить S(G).

Определенный интеграл ʃ а b f(x)dx для функции f(x), являющийся непрерывной и неотрицательной на отрезке [а; b], и есть площадь соответствующей криволинейной трапеции.

То есть, чтобы найти площадь фигуры G, ограниченной линиями y = f(x), у = 0, х = а и х = b, необходимо вычислить определенный интеграл ʃ а b f(x)dx.

Таким образом, S(G) = ʃ а b f(x)dx.

В случае, если функция y = f(x) не положительна на [а; b], то площадь криволинейной трапеции может быть найдена по формуле S(G) = -ʃ а b f(x)dx.

Пример 1.

Вычислить площадь фигуры, ограниченной линиями у = х 3 ; у = 1; х = 2.

Решение.

Заданные линии образуют фигуру АВС, которая показана штриховкой на рис. 2.

Искомая площадь равна разности между площадями криволинейной трапеции DACE и квадрата DABE.

Используя формулу S = ʃ а b f(x)dx = S(b) – S(a), найдем пределы интегрирования. Для этого решим систему двух уравнений:

{у = х 3 ,
{у = 1.

Таким образом, имеем х 1 = 1 – нижний предел и х = 2 – верхний предел.

Итак, S = S DACE – S DABE = ʃ 1 2 x 3 dx – 1 = x 4 /4| 1 2 – 1 = (16 – 1)/4 – 1 = 11/4 (кв. ед.).

Ответ: 11/4 кв. ед.

Пример 2.

Вычислить площадь фигуры, ограниченной линиями у = √х; у = 2; х = 9.

Решение.

Заданные линии образуют фигуру АВС, которая ограничена сверху графиком функции

у = √х, а снизу графиком функции у = 2. Полученная фигура показана штриховкой на рис. 3.

Искомая площадь равна S = ʃ а b (√x – 2). Найдем пределы интегрирования: b = 9, для нахождения а, решим систему двух уравнений:

{у = √х,
{у = 2.

Таким образом, имеем, что х = 4 = а – это нижний предел.

Итак, S = ∫ 4 9 (√x – 2)dx = ∫ 4 9 √x dx –∫ 4 9 2dx = 2/3 x√х| 4 9 – 2х| 4 9 = (18 – 16/3) – (18 – 8) = 2 2/3 (кв. ед.).

Ответ: S = 2 2/3 кв. ед.

Пример 3.

Вычислить площадь фигуры, ограниченной линиями у = х 3 – 4х; у = 0; х ≥ 0.

Решение.

Построим график функции у = х 3 – 4х при х ≥ 0. Для этого найдем производную у’:

y’ = 3x 2 – 4, y’ = 0 при х = ±2/√3 ≈ 1,1 – критические точки.

Если изобразить критические точки на числовой оси и расставить знаки производной, то получим, что функция убывает от нуля до 2/√3 и возрастает от 2/√3 до плюс бесконечности. Тогда х = 2/√3 – точка минимума, минимальное значение функции у min = -16/(3√3) ≈ -3.

Определим точки пересечения графика с осями координат:

если х = 0, то у = 0, а значит, А(0; 0) – точка пересечения с осью Оу;

если у = 0, то х 3 – 4х = 0 или х(х 2 – 4) = 0, или х(х – 2)(х + 2) = 0, откуда х 1 = 0, х 2 = 2, х 3 = -2 (не подходит, т.к. х ≥ 0).

Точки А(0; 0) и В(2; 0) – точки пересечения графика с осью Ох.

Заданные линии образуют фигуру ОАВ, которая показана штриховкой на рис. 4.

Так как функция у = х 3 – 4х принимает на (0; 2) отрицательное значение, то

S = |ʃ 0 2 (x 3 – 4x)dx|.

Имеем: ʃ 0 2 (x 3 – 4х)dx =(x 4 /4 – 4х 2 /2)| 0 2 = -4, откуда S = 4 кв. ед.

Ответ: S = 4 кв. ед.

Пример 4.

Найти площадь фигуры, ограниченной параболой у = 2х 2 – 2х + 1, прямыми х = 0, у = 0 и касательной к данной параболе в точке с абсциссой х 0 = 2.

Решение.

Сначала составим уравнение касательной к параболе у = 2х 2 – 2х + 1 в точке с абсциссой х₀ = 2.

Так как производная y’ = 4x – 2, то при х 0 = 2 получим k = y’(2) = 6.

Найдем ординату точки касания: у 0 = 2 · 2 2 – 2 · 2 + 1 = 5.

Следовательно, уравнение касательной имеет вид: у – 5 = 6(х – 2) или у = 6х – 7.

Построим фигуру, ограниченную линиями:

у = 2х 2 – 2х + 1, у = 0, х = 0, у = 6х – 7.

Г у = 2х 2 – 2х + 1 – парабола. Точки пересечения с осями координат: А(0; 1) – с осью Оу; с осью Ох – нет точек пересечения, т.к. уравнение 2х 2 – 2х + 1 = 0 не имеет решений (D < 0). Найдем вершину параболы:

x b = 2/4 = 1/2;

y b = 1/2, то есть вершина параболы точка В имеет координаты В(1/2; 1/2).

Итак, фигура, площадь которой требуется определить, показана штриховкой на рис. 5.

Имеем: S О A В D = S OABC – S ADBC .

Найдем координаты точки D из условия:

6х – 7 = 0, т.е. х = 7/6, значит DC = 2 – 7/6 = 5/6.

Площадь треугольника DBC найдем по формуле S ADBC = 1/2 · DC · BC. Таким образом,

S ADBC = 1/2 · 5/6 · 5 = 25/12 кв. ед.

S OABC = ʃ 0 2 (2x 2 – 2х + 1)dx = (2x 3 /3 – 2х 2 /2 + х)| 0 2 = 10/3 (кв. ед.).

Окончательно получим: S О A В D = S OABC – S ADBC = 10/3 – 25/12 = 5/4 = 1 1/4 (кв. ед).

Ответ: S = 1 1/4 кв. ед.

Мы разобрали примеры нахождения площадей фигур, ограниченных заданными линиями . Для успешного решения подобных задач нужно уметь строить на плоскости линии и графики функций, находить точки пересечения линий, применять формулу для нахождения площади, что подразумевает наличие умений и навыков вычисления определенных интегралов.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Площадь геометрической фигуры - численная характеристика геометрической фигуры показывающая размер этой фигуры (части поверхности, ограниченной замкнутым контуром данной фигуры). Величина площади выражается числом заключающихся в нее квадратных единиц.

Формулы площади треугольника

  1. Формула площади треугольника по стороне и высоте
    Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты
  2. Формула площади треугольника по трем сторонам и радиусу описанной окружности
  3. Формула площади треугольника по трем сторонам и радиусу вписанной окружности
    Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.
  4. где S - площадь треугольника,
    - длины сторон треугольника,
    - высота треугольника,
    - угол между сторонами и,
    - радиус вписанной окружности,
    R - радиус описанной окружности,

Формулы площади квадрата

  1. Формула площади квадрата по длине стороны
    Площадь квадрата равна квадрату длины его стороны.
  2. Формула площади квадрата по длине диагонали
    Площадь квадрата равна половине квадрата длины его диагонали.
    S = 1 2
    2
  3. где S - Площадь квадрата,
    - длина стороны квадрата,
    - длина диагонали квадрата.

Формула площади прямоугольника

    Площадь прямоугольника равна произведению длин двух его смежных сторон

    где S - Площадь прямоугольника,
    - длины сторон прямоугольника.

Формулы площади параллелограмма

  1. Формула площади параллелограмма по длине стороны и высоте
    Площадь параллелограмма
  2. Формула площади параллелограмма по двум сторонам и углу между ними
    Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.

    a · b · sin α

  3. где S - Площадь параллелограмма,
    - длины сторон параллелограмма,
    - длина высоты параллелограмма,
    - угол между сторонами параллелограмма.

Формулы площади ромба

  1. Формула площади ромба по длине стороны и высоте
    Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.
  2. Формула площади ромба по длине стороны и углу
    Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.
  3. Формула площади ромба по длинам его диагоналей
    Площадь ромба равна половине произведению длин его диагоналей.
  4. где S - Площадь ромба,
    - длина стороны ромба,
    - длина высоты ромба,
    - угол между сторонами ромба,
    1 , 2 - длины диагоналей.

Формулы площади трапеции

  1. Формула Герона для трапеции

    Где S - Площадь трапеции,
    - длины основ трапеции,
    - длины боковых сторон трапеции,

Площадь: Площадь величина, измеряющая размер поверхности. В математике Площадь фигуры геометрическое понятие, размер плоской фигуры. Площадь поверхности числовая характеристика поверхности. Площадь в архитектуре, открытое… … Википедия

Площадь - У этого термина существуют и другие значения, см. Площадь (значения). Площадь Размерность L² Единицы измерения СИ м² … Википедия

Площадь треугольника - Стандартные обозначения Треугольник простейший многоугольник, имеющий 3 вершины (угла) и 3 стороны; часть плоскости, ограниченная тремя точками, не лежащими на одной прямой, и тремя отрезками, попарно соединяющими эти точки. Вершины треугольника … Википедия

Площадь Ленина (Петрозаводск) - Площадь Ленина Петрозаводск … Википедия

Площадь (в геометрии) - Площадь, одна из основных величин, связанных с геометрическими фигурами. В простейших случаях измеряется числом заполняющих плоскую фигуру единичных квадратов, т. е. квадратов со стороной, равной единице длины. Вычисление П. было уже в древности… …

ПЛОЩАДЬ - одна из количественных характеристик плоских геометрических фигур и поверхностей. Площадь прямоугольника равна произведению длин двух смежных сторон. Площадь ступенчатой фигуры (т. е. такой, которую можно разбить на нескольких примыкающих друг к… … Большой Энциклопедический словарь

ПЛОЩАДЬ (в геометрии) - ПЛОЩАДЬ, одна из количественных характеристик плоских геометрических фигур и поверхностей. Площадь прямоугольника равна произведению длин двух смежных сторон. Площадь ступенчатой фигуры (т. е. такой, которую можно разбить на нескольких… … Энциклопедический словарь

ПЛОЩАДЬ - ПЛОЩАДЬ, площади, пред. о площади и (устар.) на площади, мн. и площадей, жен. (книжн.). 1. Часть плоскости, ограниченная ломаной или кривой линией (геом.). Площадь прямоугольника. Площадь криволинейной фигуры. 2. только ед. Пространство,… … Толковый словарь Ушакова

Площадь (архитект.) - Площадь, открытое, архитектурно организованное, обрамленное какими либо зданиями, сооружениями или зелёными насаждениями пространство, входящее в систему других городских пространств. Предшественниками городских П. были парадные дворы дворцовых и … Большая советская энциклопедия

Площадь Памяти (Тюмень) - Площадь Памяти Тюмень Общая информация … Википедия

Книги

  • Фигуры в математике, физике и природе. Квадраты, треугольники и круги , Шелдрик-Росс Кэтрин. О книге Фишки книги Более 75 необычных мастер-классов помогут превратить изучение геометрии в увлекательную игру В книге максимально подробно описаны главные фигуры: квадраты, круги и… Купить за 1206 руб
  • Фигуры в математике физике и природе Квадраты треугольники и круги , Шелдрик-Росс К.. Более 75 необычных мастер-классов помогут превратить изучение геометрии в увлекательную игру. В книге максимально подробно описаны главные фигуры: квадраты, кругии треугольники. Книга научит…

Чтобы решить задачи по геометрии, надо знать формулы - такие, как площадь треугольника или площадь параллелограмма - а также простые приёмы, о которых мы расскажем.

Для начала выучим формулы площадей фигур. Мы специально собрали их в удобную таблицу. Распечатайте, выучите и применяйте!

Конечно, не все формулы по геометрии есть в нашей таблице. Например, для решения задач по геометрии и стереометрии во второй части профильного ЕГЭ по математике применяются и другие формулы площади треугольника. О них мы обязательно расскажем.

А что делать, если надо найти не площадь трапеции или треугольника, а площадь какой-либо сложной фигуры? Есть универсальные способы! Покажем их на примерах из банка заданий ФИПИ.

1. Как найти площадь нестандартной фигуры? Например, произвольного четырёхугольника? Простой приём - разобьём эту фигуру на такие, о которых мы всё знаем, и найдем её площадь - как сумму площадей этих фигур.

Разделим этот четырёхугольник горизонтальной линией на два треугольника с общим основанием, равным . Высоты этих треугольников равны и . Тогда площадь четырёхугольника равна сумме площадей двух треугольников: .

Ответ: .

2. В некоторых случаях площадь фигуры можно представить как разность каких-либо площадей.

Не так-то просто посчитать, чему равны основание и высота в этом треугольнике! Зато мы можем сказать, что его площадь равна разности площадей квадрата со стороной и трёх прямоугольных треугольников. Видите их на рисунке? Получаем: .

Ответ: .

3. Иногда в задании надо найти площадь не всей фигуры, а её части. Обычно речь здесь идет о площади сектора - части круга.Найдите площадь сектора круга радиуса , длина дуги которого равна .

На этом рисунке мы видим часть круга. Площадь всего круга равна , так как . Остается узнать, какая часть круга изображена. Поскольку длина всей окружности равна (так как ), а длина дуги данного сектора равна , следовательно, длина дуги в раз меньше, чем длина всей окружности. Угол, на который опирается эта дуга, также в раз меньше, чем полный круг (то есть градусов). Значит, и площадь сектора будет в раз меньше, чем площадь всего круга.

Loading...Loading...